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Abstract

Ischemic stroke, triggered by an obstruction in the cerebral blood supply, leads to
infarction of the affected brain tissue. An accurate and reproducible automatic
segmentation is of high interest, since the lesion volume is an important end-point for
clinical trials. However, various factors, such as the high variance in lesion shape,
location and appearance, render it a difficult task.

In this article, nine classification methods (e.g. Generalized Linear Models, Random
Decision Forests and Convolutional Neural Networks) are evaluated and compared with
each other using 37 multiparametric MRI datasets of ischemic stroke patients in the
sub-acute phase in terms of their accuracy and reliability for ischemic stroke lesion
segmentation. Within this context, a multi-spectral classification approach is compared
against mono-spectral classification performance using only FLAIR MRI datasets and
two sets of expert segmentations are used for inter-observer agreement evaluation.

The results of this study reveal that high-level machine learning methods lead to
significantly better segmentation results compared to the rather simple classification
methods, pointing towards a difficult non-linear problem. The overall best segmentation
results were achieved by a Random Decision Forest and a Convolutional Neural
Networks classification approach, even outperforming all previously published results.
However, none of the methods tested in this work are capable of achieving results in the
range of the human observer agreement and the automatic ischemic stroke lesion
segmentation remains a complicated problem that needs to be explored in more detail
to improve the segmentation results.

Introduction 1

The ischemic stroke, one of the leading causes of death and disability worldwide, is 2

triggered by an obstruction in the cerebrovascular system preventing the blood to reach 3

the brain regions supplied by the blocked blood vessel directly. Irreversible damage of 4

the affected brain cells occurs within minutes to hours depending on the existence and 5
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characteristics of collateral connections, which may still supply some affected brain 6

regions with reduced blood flow (hypoperfusion). In contrast to these rather acute 7

changes, tissue alterations induced by secondary molecular effects continue for weeks to 8

month. During this time, the patient’s impairment as well as the appearance of the 9

stroke lesion in magnetic resonance imaging (MRI) datasets, which is an established 10

imaging modality for follow-up stroke assessment, fluctuates. 11

The reliable and reproducible lesion segmentation in follow-up image sequences is of 12

high interest, since the lesion volume is one important imaging end-point for clinical 13

trials. However, the automatic localization and segmentation of ischemic stroke lesions 14

in MRI volumes is not a trivial task, since the lesion shape and location depends on 15

several factors such as time-from-symptom onset, occlusion site, patient-specific 16

differences regarding the vessel anatomy, collateral connections and potential tissue 17

preconditioning due to a coexisting incomplete stenosis [1]. The presence of other white 18

matter hyperintensities (Leukoaraiosis) may furthermore complicate a precise automatic 19

segmentation. Rekik et al. [2] identified a number of common biological- and 20

imaging-dependent challenges that have to be dealt with when segmenting stroke lesion 21

in MRI volumes, including fogging in diffusion weighted (DWI) sequences, the T2 shine 22

through effect and tissue deformations. 23

Furthermore, Rekik et al. [2] performed a review of non-chronic ischemic stroke 24

lesion segmentation methods. The majority of the 25 reviewed articles describe 25

voxel-based (n = 13) approaches in contrast to image-based (n = 9), atlas-guided (n = 26

1) and deformable model (n = 2) methods. Only a few of these are fully automatic 27

approaches and none is based on supervised training of a classifier, which may be 28

beneficial for lesion segmentation in mono-modal and especially when employing 29

multi-spectral image sequences. 30

Chronic stroke lesion segmentation, on the other hand, has been approached with 31

machine learning techniques. For example, Seghier et al. [3] proposed an outlier search 32

with subsequent fuzzy clustering of voxels in T1-weighted (T1w) MRI datasets for 33

segmentation of chronic lesions. Forbes et al. [4] presented a Bayesian multi-spectral 34

hidden Markov model with individual weights for the different MRI sequences. However, 35

their method was only evaluated on a single case. An interesting semi-automatic as well 36

as automatic method can be found in Wilke et al. [5], which takes the special stroke 37

characteristics into account and employs four-class fuzzy-clustering to segment chronic 38

ischemic stroke lesions in T1w MRI volumes. However, it was found that 39

user-interaction is still required to achieve acceptable segmentation results. 40

Mitra et al. [6] approached the problem of chronic lesion segmentation with a 41

combination of Bayesian-Markov random fields and random decision forests (RDF) for 42

voxel-wise classification in multi-spectral MRI volumes with comparatively good results. 43

A most recent work by Chyzhyk et al. [7] proposes active learning for interactive, 44

single-patient segmentation from multi-spectral volumes. In related previous works, we 45

have shown Extra Tree (ET) forests [8] outperform all previously published methods 46

and also obtained acceptable results with support vector machines (SVM) [9], but found 47

the latter time-consuming and difficult to optimize. 48

As a drawback, most previously presented methods were only evaluated using a 49

limited number of private datasets that are often insufficiently described, which makes a 50

comparison of these methods difficult, if not impossible. This deficiency can partially be 51

attributed to the lack of publicly available non-acute datasets of ischemic stroke lesions 52

with manual ground truth segmentations. 53

In this work, we evaluate and compare nine popular classification approaches in a 54

fair and direct comparison using a clinically relevant set of MRI images of sub-acute 55

ischemic stroke patients. These approaches include comparably simple methods like 56

k-Nearest-Neighbors (kNN) and Gaussian Naive Bayes (GNB), statistical approaches 57
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like Generalized Linear Models (GLM), as well as high-level machine learning 58

techniques like Random Decision Forests (RDF) and Convolutional Neural Networks 59

(CNN). The results shed light on the nature of the segmentation problem and constitute 60

a solid base for developing more specialized solutions. The evaluation includes a 61

juxtaposition of mono- against multi-spectral MRI datasets and takes inter-observer 62

variability into account. 63

In contrast to our previous work [8], we now investigate a wide range of classifiers, 64

employ a clinically more relevant best-effort appraoch and investigate the influence of 65

multiple raters on the machine learning methods. 66

Materials and methods 67

Data and ground truth 68

Various MRI sequences are typically utilized in the clinical routine for the assessment of 69

ischemic stroke lesions, as they provide insights into different aspects of the disease. 70

Fluid attenuation inversion recovery (FLAIR) MRI is probably the most prominent 71

technique for imaging in sub-acute ischemic stroke patients, followed by DWI and T1w 72

datasets. In the sub-acute phase (here: > 24 hours and < 2 weeks), the lesion usually 73

appears hyper-intense in FLAIR and DWI and hypo-intense in T1w datasets. 74

The database used for evaluation in this study consists of 37 cases acquired routinely 75

for two clinical studies on spatial neglect [10–12]. More information on the patients, 76

lesion characteristics, imaging parameters, and image quality are detailed in a previous 77

work [8]. 78

Each dataset was manually segmented (as filled volume) in axial FLAIR images by 79

two observers with several years of dedicated experience in stroke imaging (GTG and 80

GTL). If required and available, other MRI sequences were used to resolve ambiguities. 81

In case of a previous acute ischemic stroke history, only the newest ischemic stroke 82

lesions were segmented. Hemorrhages were only included in the manual lesion 83

segmentations if completely encircled by ischemic tissue. 84

The pre-processed cases as well as the ground-truth and segmentation results are 85

available from http://dx.doi.org/10.6084/m9.figshare.1585018. Some of the 86

cases have recently been incorporated in the evaluation dataset of the ISLES 2015 87

Ischemic Stroke Lesion Segmentation challenge (www.isles-challenge.org), together 88

with an larger set of images. 89

Image segmentation as voxel classification task 90

Treating a segmentation problem as voxel-wise segmentation task enables the 91

application of machine learning techniques. Each image voxel is treated as one 92

stand-alone sample, characterized by a number of features (e.g. its gray-value) and 93

assigned to a binary class (0=background, 1=lesion). To obtain a generalized solution 94

model for the problem, a classifier is trained on a set of labeled training samples. During 95

the subsequent application, a formerly unseen volume is passed to the trained classifier, 96

which decides for every voxel whether it belongs to an ischemic stroke lesion or not. 97

The image features 98

Four different types of simple image features are employed in this work, namely the 99

intensity feature, the weighted local mean, the 2D center distance and the local 100

histogram. They provide the classifier with information of the voxel’s gray-value and the 101

gray-values in a small neighborhood as well as their distribution. More details about 102

these features can be found in Maier et al. [8]. 103
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Pre- and post-processing 104

All images, both for the training and testing phase, are prepared using the fully 105

automatic pre-processing pipeline described in Maier et al. [8]. This includes 106

down-sampling, intracranial segmentation, bias field correction and intensity 107

standardization. Due to the automatic nature of this pre-processing, insufficient 108

outcome can and does occur. For example, the bias field correction might fail, the 109

skull-stripping can leave some skull tissue in the image or the intensity standardization 110

can falsely skew the image’s histogram. A good classifier should be able to deal with 111

such cases. For post-processing after voxel-wise classification, all connected binary 112

objects with a size < 1.5 ml are removed from the segmentation under the assumption 113

that they constitute outliers, e.g. due to noise. The size corresponds to objects of a side 114

length of less than 4 pixel at working resolution. The smallest lesion in the data set is 115

1.8 ml in volume. This procedure has previously been proven effective, especially to 116

reduce the number of false-positives in the skull [8]. A schematic overview of the 117

processing pipeline can be found in Fig. 1. 118

Fig. 1. Processing pipeline.

Classification methods 119

A total of 9 classification methods are evaluated and compared with each other in this 120

study. The function and set-up of these classification methods is described in this 121

section. If not noted otherwise, no effort has been undertaken to optimize their 122

parameters for this segmentation problem. Instead, they were executed with their 123

best-practice parameter values, i.e. the default parameters of the scikit-learn [13] 124

toolkit. 125

Gaussian Naive Bayes Naive Bayes classifiers approach the classification task with 126

the “naive” assumption of independence between every pair of features. The Gaussian 127

Naive Bayes classifier assumes the likelihood of the features to be Gaussian: 128

P (xi|y) =
1√

2πσ2
y

exp− (xi − µy)2)

σ2
y

(1)

, where xi is a dependent feature vector, y a class variable and the parameters σy and 129

µy are estimated using maximum likelihood. 130
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Even though GNB oversimplifies the reality, they have been found to perform 131

surprising well in a number of real-world problems. Furthermore, GNB classifiers 132

require only a small amount of training data, are parameter-free and train very fast. 133

They are well researched, both from a theoretical [14] and empirical [15] point of view. 134

k-Nearest-Neighbors The supervised k-Nearest-Neighbors [16] approach classifies 135

testing samples by transferring the majority label of the k nearest training neighbors to 136

the corresponding test case. Although multiple distance definitions have been proposed 137

in the past, the Euclidean distance is used most commonly and also employed in this 138

study. 139

kNN classifiers do not generalize from the training set, but simply store the training 140

data. Comparable to GNB classifiers, k-Nearest-Neighbors models have been found to 141

perform well for many real-world classification problems. 142

Besides the definition of the distance metric, the choice of k is crucial. Higher values 143

for k reduce the influence of noise, whereas lower values lead to more distinct class 144

boundaries. As an additional parameter, the training samples votes can be weighted by 145

their distance. However, this feature was not used in this study to keep the method as 146

simple as possible. 147

Generalized Linear Models In a Generalized Linear Model, tissue infarction 148

probability can, for example, be represented by the logistic function as typically used for 149

biological applications: 150

F (t) =
et

et + 1
(2)

with t being a linear function of the input parameters x, 151

t = β0 + β1x1 + . . .+ βnxn (3)

The main advantages of the algorithm are the simplicity, comparably high speed for the 152

training as well as for the testing phase, and possibility to investigate the different 153

effects of the multiple input parameters on the outcome probability in terms of the β 154

parameters. However, logistic regression models are also known to be unsuitable for 155

inherently nonlinear problems. 156

Gradient Boosting classifier Gradient Boosting (GB) classifiers describe a 157

generalized boosting method to arbitrary differentiable loss functions. In case of the GB 158

classifier implementation used in this study, this method is similar to decision forests in 159

the sense that a large number of decision trees is trained. These weak classifiers are 160

optimized at each stage to fit the negative gradient of the deviance (twice binomial 161

negative log-likelihood) loss function, i.e. the steepest gradient descent. The learning 162

rate regularization strategy proposed by Friedman et al. [17] is employed in this work, 163

but not the bootstrapping strategy described in Friedman et al. [18], which would result 164

in stochastic GBs. 165

GB classifiers are known to achieve a high predictive power and to be robust against 166

outliers in output space. A severe drawback is their sequential nature, which leads to 167

long training times. They can be considered a predecessor to decision forests. 168

GB classifiers required the definition of a number of hyper-parameters. In general, 169

there is a trade-off between the learning rate and the number of estimators while the 170

maximum tree depth should be kept small to allow faster training times. For this 171

application, we chose to train 100 trees with a maximum depth of 20. 172
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AdaBoost AdaBoost (AB) [19] represents another well-known boosting method, 173

where a sequence of weak learners is fitted to repeatedly modified versions of the 174

training data. A weighted majority vote at application time is used to achieve the final 175

class prediction. In contrast to decision trees, which utilize bootstrapping for this 176

purpose, AdaBoost assigns individual weights to the training samples: The first weak 177

classifier is trained on the uniformly weighted samples, then the weights are iteratively 178

increased for training samples wrongly predicted in previous steps. Hence, difficult and 179

complex training samples obtain a greater weight for later weak classifiers. 180

AdaBoost is often considered as one of the best out-of-the-box classifiers. 181

Nonetheless, it is also known to be sensitive to noise and outliers, as it explicitly 182

increases their influence. 183

The implementation used in this study employs decision tree stumps as weak 184

classifiers. Important additional parameters are the number of estimators and the 185

learning rate, which penalizes later classifiers. The first value was set to 100, the latter 186

kept at its default value 1.0. 187

Random Decision Forests Random Decision Forest classifiers [20] rate among the 188

most recent and popular boosting methods and have proven their classification 189

performance for difficult problems in many applications [6, 21]. Based on decision 190

trees [22] as weak classifiers, they employ training set bagging [23] and random 191

subspaces [24] to introduce a measure of randomness into the training. 192

RDF classifiers are inherently parallel and, hence, train very fast. The randomness 193

avoids the training to get stuck at a local minimum, which improves the predictive 194

accuracy and controls over-fitting. 195

While RDF classifiers depend on a number of parameters, such as the number of 196

trees, the features considered at each split, and the maximum tree depth, they have 197

been found to be easy to optimize [8, 21]. For this application, we chose to train 100 198

trees with a maximum depth of 20. 199

Extra Tree forests Extra Tree (ET) forest classifiers are a variant of RDF 200

introduced by Geurts et al. [25], which add an additional layer of randomness. Instead 201

of searching for the optimal split, a random split threshold is used during the training of 202

the decision trees. The implementation used in this work did not employ bootstrapping 203

of the training data. 204

ETs have been found to decrease the variance at the cost of a bias even greater than 205

it is the case for RDFs. Furthermore, they might show improved prediction for difficult 206

classification problems with many inter-dependent features. 207

ET methods require the same parameters as RDF classifiers. 208

Convolutional Neural Networks In recent benchmarks, neural networks present 209

the winning solutions for various computer vision tasks like object detection, street 210

number recognition and mitosis detection [26–28]. Convolutional Neural Networks [29] 211

are a special form of neural networks that transform the input by repeated steps of 212

convolution followed by pooling. The output of this feature extraction step forms the 213

input to a classical fully connected neural network. The whole network including the 214

kernels of the convolution is trained using back propagation. 215

By training their own feature extractors, CNNs can be easily applied to new 216

problems. Their classification speed is comparable to other methods. However, their 217

training time is considerably longer. Also the network’s architecture and multiple hyper 218

parameters need to be chosen carefully for good results. In order to achieve a good 219

generalization, a high training sample count, the convolutional architecture [30] and 220

dropout layers [31] are recommended. 221
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Contrary to the other methods presented in this paper, the CNN uses the raw image 222

input instead of the manually designed features. Therefore, 107 overlapping patches of 223

37x37x3 voxels are sampled from the training data in a uniform random manner and 224

labeled according to the center voxel’s classification in the ground truth. For our 225

experiments, the Caffe [32] framework is used. The network is built from three steps of 226

convolution with rectified linear activation (RELU) and pooling, followed by one fully 227

connected layers with RELU and one with softmax activation. The precise network 228

architecture is described in Table 1. Learning was performed in a fully supervised 229

manner using a batch size of 500, a learning rate of 0.0001, a weight decay of 0.004, and 230

a momentum of 0.9. 231

Table 1. Convolutional neural network architecture.
Layer Type Maps and neurones Kernel size

0 input 3 maps of 37x37 neurons
1 convolution 100 maps of 35x35 neurons 3x3
2 pooling 100 maps of 18x18 neurons 2x2
3 convolution 150 maps of 16x16 neurons 3x3
4 pooling 150 maps of 8x8 neurons 2x2
5 convolution 150 maps of 6x6 neurons 3x3
6 pooling 150 maps of 3x3 neurons 2x2
7 fully connected 300 neurons 1x1
8 fully connected 2 neurons 1x1

The input is processed from the top to the bottom, where the two output neurons each
represent one class. Rectified linear activation is used after each convolution and the
first fully connected layer. The two final neurons are activated by a softmax function
and can be interpreted as the probability of a particular input to belong to the
respective class.

Tuned Extra Tree forests To assess the upward potential of forest-based methods, 232

we also included tuned Extra Trees forests (tunedET) in our set of classifiers. They are 233

ET classifiers with tuned parameters for improved classification results as described in 234

Maier et al. [8]. 235

Evaluation metrics 236

(This text has been moved here from the Results section and extended by the metric 237

formulas.) The evaluation of the nine classification techniques described above was 238

conducted using three different metrics: (1) the dice metric (DM), which describes the 239

volume overlap between two segmentations and is sensitive to the lesion size, (2) the 240

average symmetric surface distance (ASSD), which denotes the average surface distance 241

between two segmentations, and (3) the Hausdorff distance (HD), which is a measure of 242

the maximum surface distance and is, hence, especially sensitive to outliers. 243

Additionally, precision and recall values are reported for each classifier to assess over- 244

and under-segmentation, respectively. 245

The DM is defined as 246

DM =
2|A ∩B|
|A|+ |B|

(4)

with A and B denoting the set of all voxels of ground truth and segmentation 247

respectively. To compute the ASSD, we first define the average surface distance (ASD), 248

a directed metric, as 249

ASD(AS , BS) =

∑
a∈AS

minb∈BS
d(a, b)

|AS |
(5)
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and then average over both directions to obtain the ASSD 250

ASSD(AS , BS) =
ASD(AS , BS) +ASD(BS , AS)

2
(6)

Here AS and BS denote the surface voxels of ground truth and segmentation 251

respectively. Simmilar, the HD is defined as the maximum of all surface distances with 252

HD(AS , BS) = max{max
a∈AS

min
b∈BS

d(a, b), max
b∈BS

min
a∈AS

d(b, a)} (7)

The distance measure d(·) employed in both cases is the Euclidean distance, computed 253

taking the voxel size into account. Finally, precision and recall are computed from true 254

positive (TP ), false positive (FP ) and false negative (FN) voxels as 255

precision =
TP

TP + FP
(8)

and 256

recall =
TP

TP + FN
(9)

Results 257

For the experiments, all methods were trained and evaluated with the leave-one-out 258

evaluation schema, i.e. 36 cases were used for training and the remaining for testing in 259

all possible combinations. At working resolution, the number of available voxels for 260

training surpassed the ten million. To speed up training, only a sub-set of n = 500, 000 261

of these were selected. For this purpose, we randomly sampled 500, 000/36 ≈ 14, 000 262

training voxels from each training case using stratified random sampling, i.e. keeping 263

each cases lesion to background ratio intact. In a previous study [8] we have shown that 264

using more than 100, 000 samples did not significantly improve the results, and hence 265

we chose here a larger value for n for an ample security margin. The exact positions of 266

the randomly selected training voxels of each case that were used to generate the results 267

presented in this article are available from the corresponding author on request. The 268

CNN required another approach since it trains on the actual images and learns its own 269

features. 270

For the experiments, we distinguish between two scenarios: (I) Under the 271

assumption that a FLAIR image is almost always acquired for ischemic stroke 272

assessment with MRI, the flair set of experiments is mono-spectral using only the 273

FLAIR sequence. The results obtained for all classifiers are displayed in Table 2. 274

(II) In the clinical routine, the acquisition of some MRI sequences can be skipped 275

due to various reasons. Our second setting constitutes a besteffort approach to handle 276

the sparsity in the available sequences for each case. If available, the T1w and/or DWI 277

sequences are used in addition to the FLAIR imaging information, which led to the 278

requirement of training multiple dependent classifiers. I.e. a specialized classifier is 279

trained on all cases with FLAIR sequences (n = 37) and employed to segmented 280

FLAIR-only test cases (n = 16); a FLAIR+T1w classifier is trained on all corresponding 281

cases (n = 21) and employed to segment cases with a FLAIR and a T1w sequence 282

available (n = 7); the same applies to FLAIR+T1w+DWI (n = 14 for both, training 283

and testing). The results obtained with this besteffort configuration are given in Table 3. 284

In both tables, the best-performing method for each evaluation measure is marked in 285

bold. Significant differences to this best-performing method computed with student’s 286

paired t-test are marked with a star (∗) for a confidence interval of 95% (p < 0.05) and 287

two stars (∗∗) for a confidence interval of 99% (p < 0.01). Nominal p-values are 288
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Table 2. Flair scenario
Classifier DM [0, 1] HD (mm) ASSD (mm) Prec. [0,1] Rec. [0,1] Cases Traintime
100 Nearest Neighbors 0.54**± 0.20 36.52± 22.4 7.07**± 4.25 0.82 0.45 34/37 5s
10 Nearest Neighbors 0.56**± 0.20 36.47± 25.1 6.58*± 4.01 0.82 0.46 35/37 5s
5 Nearest Neighbors 0.58**± 0.18 39.72*± 27.4 6.80*± 4.35 0.79 0.51 36/37 5s
AdaBoost 0.60*± 0.19 39.28*± 27.3 7.42*± 6.77 0.70 0.61 35/37 7m
Extra Trees 0.64**± 0.19 29.49± 18.5 5.29± 3.94 0.84 0.57 35/37 3m
Gaussian Naive Bayes 0.48**± 0.22 69.86**± 26.7 14.82**± 8.16 0.44 0.78 36/37 1s
Generalized Linear Model 0.44**± 0.25 38.77*± 21.3 8.54**± 5.76 0.87 0.34 32/37 2m
Gradient Boosting 0.63**± 0.18 32.72± 23.2 5.93± 5.28 0.72 0.62 35/37 12h
Random Decision Forest 0.67± 0.18 28.16± 20.7 4.89± 3.63 0.82 0.62 35/37 6m

Convolutional Neural Network 0.67± 0.18 29.64± 24.6 5.04± 5.28 0.77 0.64 35/37 2h

Trained with GTG, evaluated on GTG, average computed over 31/37 cases, stars denote significant difference to
best-performing method (in bold) with ∗∗ = p < 0.01 and ∗ = p < 0.05, train-times given for a single training round, value
after ± denotes the standard deviation

Table 3. Besteffort scenario
Classifier DM [0, 1] HD (mm) ASSD (mm) Prec. [0,1] Rec. [0,1] Cases
100 Nearest Neighbor 0.61**± 0.21 38.10**± 26.5 6.10**± 4.03 0.82 0.55 34/37
10 Nearest Neighbor 0.63**± 0.21 35.85**± 26.1 5.62**± 3.96 0.82 0.56 36/37
5 Nearest Neighbor 0.63**± 0.19 38.68**± 28.6 6.00**± 4.40 0.78 0.59 36/37
AdaBoost 0.69± 0.16 32.65*± 25.5 5.60± 5.84 0.73 0.68 34/37
Extra Trees 0.70**± 0.19 23.18± 15.4 3.98**± 3.56 0.85 0.64 35/37
Gaussian Naive Bayes 0.54**± 0.20 71.48**± 22.9 12.01**± 5.36 0.47 0.82 36/37
Generalized Linear Model 0.55**± 0.27 32.44**± 23.8 6.38**± 5.77 0.90 0.47 34/37
Gradient Boosting 0.68**± 0.17 25.83± 19.0 3.95± 2.89 0.79 0.65 35/37
Random Decision Forest 0.72± 0.17 22.35± 15.8 3.67± 3.35 0.84 0.68 35/37

tuned Extra Trees 0.73*± 0.18 21.48± 12.0 3.49± 2.76 0.84 0.69 35/37

Trained with GTG, evaluated on GTG, average computed over 33/37 cases, stars denote significant difference to
best-performing method (in bold) with ∗∗ = p < 0.01 and ∗ = p < 0.05, value after ± denotes the standard deviation

reported without correction for multiplicity. Note that the tunedET were exempt from 289

the selection of the best-performing method, as they were tuned for performance. The 290

full results for each classifier and case can be found in the supplementary material S1 291

File. It should be noted that some methods failed completely for certain cases (i.e. 292

achieved a DM of 0). The corresponding datasets were excluded from the calculation of 293

the average values for all methods to enable a direct and fair comparison. 294

The inter-observer differences between the two expert segmentations are given in 295

Table 4. 296

Table 4. Inter-observer score
DM [0, 1] HD (mm) ASSD (mm) Prec. [0,1] Rec. [0,1]
0.80 15.79 2.03 0.73 0.911

GTG vs. GTL

To assess each methods dependency on the ground truth, Table 5 shows respective 297

cross validations for selected evaluation measures. 298

Visual results for a rather simple case are presented in Fig. 2, and for a more 299

complicated dataset with other white matter hyperintensities present in Fig. 3 300

Case-wise results for all methods can be found in the supplementary material S1 File 301

on the Evaluation Dataset and be used to reconstruct the means and statistical 302

significancies. 303

To evaluate the different algorithms theoretical optimal performance optained by 304

thresholing the a-posteriori class probability maps, Fig. 4 shows the Receiver Operating 305
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Table 5. Dependency on training ground-truth.
GTG7→GTG GTG7→GTL GTL 7→GTL GTL 7→GTG

Classifier DM [0, 1] ASSD (mm) DM [0, 1] ASSD (mm) DM [0, 1] ASSD (mm) DM [0, 1] ASSD (mm)
Generalized
Linear Model

0.55 6.38 0.58 5.77 0.57 5.84 0.52 6.66

Random Deci-
sion Forest

0.72 3.67 0.72 3.46 0.72 3.31 0.69 3.92

tuned Extra
Trees

0.73 3.49 0.72 3.28 0.73 3.21 0.70 3.81

Results for selected methods on different combination of training and testing ground truth sets in besteffort scenario.

(a) ground-truth
(GTG)

(b) 100NN (c) 10NN (d) 5NN (e) AdaBoost

(f) ET (g) GNB (h) GLM (i) GB (j) RDF

Fig. 2. Results for case 21. Slice 21 with besteffort scenario trained on GTG.

Characteristic (ROC) curves. These have been obtained for both evaluation scnearios 306

on the GTG ground truth set. Some associated Area Under Curve (AUC) values for the 307

besteffort-scenario are: tunedET= .97, RDF=.97, GLM= .96, ET= .95, AdaBoost=.95, 308

GB= .91, 100NN= .89 309

Discussion 310

Method-specific interpretation 311

Overall, the results revealed that the RDF classifier consistently and significantly 312

outperformed all other non-tuned classifiers for all ground truth sets and scenarios. 313

Adding their relatively fast training times, RDF classifiers can, hence, be considered the 314

best candidate for further method development as well as the baseline other 315

classification-based lesion segmentations should be compared with. 316

The ET classifier performed similar well and stable, but also increases the bias 317

considerably, as indicated by the high precision values. The forest related GB classifier 318

led to the overall third-best results. However, the excessively long training times of this 319

classification method render it unsuitable for rapid development and testing. The 320

results of AdaBoost, the last in the group of ensemble methods, showed a clear upward 321
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(a) ground-truth
(GTG)

(b) 100NN (c) 5NN (d) AdaBoost (e) ET

(f) GNB (g) GLM (h) GB (i) RDF (j) tunedET

Fig. 3. Results for case 04. Slice 30 with besteffort scenario trained on GTG. Note
the presence of other white matter hyperintensities.

step from mono- to multi-spectral input data. This might be attributed to the better 322

outlier avoidance in the besteffort pre-processing. 323

The simple kNN classifiers led to the best results among the non-ensemble classifiers 324

evaluated in this study. While fast to train, they showed an overly high precision at the 325

cost of recall, hinting towards complicated decision borders for the classification 326

problem. Next are the GLM results, that appear to fail finding a linear decision border 327

in the flair scenario, which is a known drawback of this classifier. However, the results 328

of the GLM classifier showed an impressive gain when employing multi-spectral data, as 329

a higher dimensional feature space enables more flexibility regarding the border 330

placement. GNB, the simple and parameter-free classifier, scores last and clearly leads 331

to an over-segmentation of the lesions. All of these findings are supported by the visual 332

evaluation (see Fig. 2 and 3). 333

The CNNs perform nearly head to head with the RDFs, but care must be taken 334

interpreting the results, as they were not obtained using the same feature set. Rather, 335

the comparison must be conducted in terms of potential. The results for the tuned ETs 336

give an idea of the expectable gain for the ensemble methods, which is significant (at 337

p < 0.05), but clearly limited. The CNN method, on the other hand, is highly 338

configurable, which, taken together with the intrinsic feature detection, may bare high 339

potential for even better multi-spectral segmentation results. Drawbacks are the 340

black-box character, the difficult parameter tuning, the high system requirements and of 341

course the large training times. 342

The ROC curves (Fig. 4) of the tested algorithms and their associated AUC values 343

provide a measure for each method’s performance for the ideal cut-point of the 344

a-posteriori class probability maps. The results supports above observations that the 345

ensemble methods perform generally better. An exception is the GLM, whose curve is 346

simmilar to the AdaBoost approach. For an ideal cut-point of the a-posteriori class 347

probability maps, the GLM would rate directly after the RDF and tunedET, on the 348

same level as AdaBoost and the ET algorithms. For the flair -scenario, they fall behind 349
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(a) besteffort scenario (b) flair scenario

Fig. 4. ROC curves for both evaluation scenarios computed over the GTG ground
truth.

the ET. 350

Failed cases 351

(Completely new sub-section with figures) For some of the cases, at least one classifier 352

failed to produce valid results (i.e. a DM> 0). These were excluded from the 353

computation of the evaluation measure means in tables 2 and 3, and are shown in 354

figures 5 and 6. 355

(a) 09/24 ground-truth
(GTG)

(b) 11/29 ground-truth
(GTG)

(c) 39/36 ground-truth
(GTG)

(d) 41/24 ground-truth
(GTG)

Fig. 5. Cases failed by at least one classifier.

The cases 09, 11 and 41 posed problems to the GLM, which might be attributed to 356

their unusual high (case 11) respectively low (cases 09 and 41) hyperintensities inside 357

the lesion area. In general, the linear model of the GLM did not adapt well to the 358

complexity of the task and produced with n = 5 the largest number of failed cases, 359

followed by the 100NN approach (n = 3), while all others did not fail in more than 360

n = 2 cases. 361

Most notably among the failed cases are 37 and 44. For 37, all methods failed to 362

produce a valid segmentation. Taking a look at the ground truth (Fig. 6(a)), we observe 363
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(a) 37/44 ground-truth
(GTG)

(b) 37/32 tunedET (c) 44/24 ground-truth
(GTG)

(d) 44/24 CNN

Fig. 6. Worst two cases. See text for description.

a small lesion in the superior regions of only minor hyperintensity. A typical failed 364

segmentation, as displayed in Fig. 6(b), assumed the lesion to be among the numerous 365

periventricular white matter hyperintensities. For case 44, some methods managed to 366

segment part of the lesion (Fig. 6(d)), but the maximum DM value reached has been 367

0.21. This lesion is very small, periventricular and of low hyperintensity. 368

For both cases, only the FLAIR sequence has been available, missing potentially 369

relevant information from the other MRI sequences which might have facilitated the 370

segmentation task. 371

Visual interpretation 372

(Completely new sub-section with figures) 373

With an average DM of 0.80 over all the different methods tested, case 36 can be 374

considered an easy case with a standard deviation as low as 0.07. Fig. 7 depicts its 375

ground truth as well as the best and worst result obtained. 376

(a) 36/27 ground-truth
(GTG)

(b) 36/27 GNB (c) 36/27 ET

Fig. 7. Best overall case 36 and the worst (GNB, DM=0.61) as well as best (ET,
DM=0.86) result obtained over all methods.

The image displays a single, large and homogeneously hyperintense lesion. 377

Differences between the methods stem mainly from classifier specific tendencies, such as 378

the over-segmentation of the GNB. 379

Another case to take a close look at is 18, for which the largest standard deviation 380

over all methods has been obtained (DM=0.55± 0.31). As can be seen in Fig. 8, the 381

lesion is clearly outlined and strongly hyperintense, hence the task should be an easy 382

one. 383
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(a) 18/28 ground-truth
(GTG)

(b) 18/28 AdaBoost (c) 18/28 CNN (d) 18/28 ET

Fig. 8. Case with low agreement between methods in flair scenario.

And such it seems when looking at the DM results of the CNN (0.85) and the 5NN 384

respectively 10NN classifiers (both 0.81). Most other methods performed acceptably 385

with values around 0.60. But on the lower end, we have the GNB (0.16), AdaBoost 386

(0.08) and the GLM (0.00). These failures might be attributed to the unusual high 387

intensity values inside the lesion paired with the low extrapolation and generalization 388

abilities of the latter methods. 389

Under the besteffort approach, when the T1 and DWI sequences are equally 390

considered, the inter-method standard deviation for case 18 drops to 0.09, signaling 391

greater agreement. In general, when comparing the besteffort to the flair scenario, we 392

reach the conclusion that it is better to use all available information than only the least 393

common denominator. 394

Inter-observer variability 395

The inter-observer differences (Table 4) are relatively high, which underlines the 396

difficulties associated with this segmentation task and emphasizes the need for an 397

automatic and, above all, reproducible segmentation method. Precision and recall reveal 398

the GTL ground truth set to contain consistently smaller lesion masks. However, the 399

manual segmentation is still superior compared to the automatic segmentation as there 400

was no complete disagreement between the raters (i.e. a DM value of 0) for any of the 401

datasets used in this study. 402

The methods ranking order is stable for all ground-truth sets and scenarios, i.e. all 403

of them adapt well to the underlying model. Using one ground truth set as training and 404

the other as testing did not lead to considerable performance differences. Therefore, it 405

may be argued that all direct comparisons of the methods used in this study are sound, 406

independently of the ground truth set employed. 407

Comparison with results from literature 408

The overall best segmentation results were achieved by the tuned Extra Tree forests. 409

The quantitative results of this method as well as the un-tuned ET, RDF and CNN 410

accuracies, are superior compared to all previously reported results in literature. 411

Wilke et al. [5] reported a DM of 0.60 for their semi-automatic and 0.49 for their 412

automatic approach. Hevia-Montiel et al. [33] reported 0.54± 0.18 and Seghier et al. [3] 413

even 0.64± 0.10, with only eight real cases used for evaluation. Mitra et al. [6] achieved 414

an average DM of 0.60± 0.13 and ASSD of 3.06± 3.17 mm with RDFs. However, it 415

should be noted that these comparisons are not truly valid, as different datasets and 416

different ground truth segmentations were used for evaluation. Regrettably, no publicly 417
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available dataset existed to compare follow-up ischemic stroke lesion segmentation 418

methods before 2015. 419

Characteristics of ischemic stroke lesion segmentation 420

The results of this study enable us to make some assumptions about the nature of the 421

ischemic stroke lesion segmentation problem. First, the rather low inter-observer 422

agreement demonstrates the difficulty of the segmentation problem. Considering the 423

subsequent uncertainty in the ground truth lesion masks, the training set can be 424

expected to be noisy and outlier-ridden, an observation which is supported by the low 425

performance of the noise sensitive AdaBoost classifier. 426

The results of the GLM classifier dispute the existence of a linear separation border 427

between lesion and other tissue, even in the multi-spectral case. Hence, the 428

classification problem can be considered non-linear. The employed features seem to be 429

neither completely dependent nor completely independent, in which cases one would 430

have expected better GNB results [15]. Furthermore, the comparably poor results 431

obtained for the kNNs show that the different features are not equally important, one of 432

the main kNN assumptions. 433

Finally, the good performance of the RDF classifier hint towards a high variance and 434

low bias of the problem, although not unbalanced enough to justify the use of the ET 435

classifier. 436

To sum up, the ischemic stroke lesion classification problem is clearly a difficult one 437

with many challenging characteristics. 438

Conclusions 439

In this work, nine different classifiers were used for ischemic stroke lesion segmentation 440

from brain MRI images and evaluated using different ground truth sets and scenarios. 441

Based on the results of this study, it seems justified to recommend RDF classifiers as 442

the basis for method development, as they are fast, stable, and robust. Within this 443

context, alternative features, as well as better pre- and post-processing methods should 444

be investigated. Ischemic stroke lesion segmentation is a difficult problem with 445

uncertain ground truth and a strong dependency on the pre-processing methods. Hence, 446

improvements in this area are as important as developing better classifiers and features. 447

While the obtained RDF classification results outperform all previously published 448

methods, human observer accuracy is not yet reached and ischemic stroke lesion 449

segmentation remains a complicated problem. Apart from RDF classifiers, convolutional 450

neural networks appear to hold more potential for improvement and should be employed 451

in use-cases where accuracy is considered more important than speed, usability, and 452

ease-of-configuration. 453

While this study compared different classifier solutions for ischemic stroke lesion 454

segmentation in detail, the results have been obtained under the premis of a single type 455

of pre-processing and a fixed set of features (except in the case of the CNN). It would 456

be desireable to investigate the influence of different features and pre-processing 457

decisions on the segmentation results. 458

Furthermore, the presented methods have been devised and implemented by a single 459

team of researchers. An open-for-all comparison, as e.g. the scheduled ISLES Challenge 460

at the forthcoming MICCAI 2015 conference, will provide a greater insight in the 461

difficult probem of stroke lesion segmentation. 462
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References

1. Kaesemann P, Thomalla G, Cheng B, Treszl A, Fiehler J, Forkert ND. Impact of
severe extracranial ICA stenosis on MRI perfusion and diffusion parameters in
acute ischemic stroke. Frontiers in Neurology. 2014;5(254).

2. Rekik I, Allassonniere S, Carpenter TK, Wardlaw JM. Medical image analysis
methods in MR/CT-imaged acute-subacute ischemic stroke lesion: Segmentation,
prediction and insights into dynamic evolution simulation models. A critical
appraisal. NeuroImage: Clinical. 2012;1(1):164–178.

3. Seghier ML, Ramlackhansingh A, Crinion J, Leff AP, Price CJ. Lesion
identification using unified segmentation-normalisation models and fuzzy
clustering. NeuroImage. 2008 Jul;41(4):1253–1266.

4. Forbes F, Doyle S, Garcia-Lorenzo D, Barillot C, Dojat M. Adaptive weighted
fusion of multiple MR sequences for brain lesion segmentation. In: Biomedical
Imaging: From Nano to Macro, 2010 IEEE International Symposium on; 2010. p.
69–72.

5. Wilke M, de Haan B, Juenger H, Karnath HO. Manual, semi-automated, and
automated delineation of chronic brain lesions: a comparison of methods.
NeuroImage. 2011 Jun;56(4):2038–2046.

6. Mitra J, Bourgeat P, Fripp J, Ghose S, Rose S, Salvado O, et al. Lesion
segmentation from multimodal MRI using random forest following ischemic
stroke. NeuroImage. 2014;.

7. Chyzhyk D, Dacosta-Aguayo R, Mataró M, Graña M. An active learning
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2012. Available from:
http://www.zhb.uni-luebeck.de/epubs/ediss1236.pdf.

13. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al.
Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research.
2011;12:2825–2830.

14. Zhang H. The optimality of naive Bayes. In: Proceedings of the Seventeenth
International Florida Artificial Intelligence Research Society Conference. vol. 1;
2004. p. 562.

15. Rish I. An empirical study of the naive Bayes classifier. In: IJCAI 2001 workshop
on empirical methods in artificial intelligence. vol. 3; 2001. p. 41–46.

16. Cover T, Hart P. Nearest neighbor pattern classification. Information Theory,
IEEE Transactions on. 1967;13(1):21–27.

17. Friedman JH. Greedy function approximation: a gradient boosting machine.
Annals of Statistics. 2001;p. 1189–1232.

18. Friedman JH. Stochastic gradient boosting. Computational Statistics & Data
Analysis. 2002;38(4):367–378.

19. Freund Y, Schapire RE. A Decision-Theoretic Generalization of On-Line
Learning and an Application to Boosting. Journal of Computer and System
Sciences. 1997;55(1):119–139.

20. Breiman L. Random Forests. Machine Learning. 2001;45(1):5–32.

21. Criminisi A, Shotton J, editors. Decision Forests for Computer Vision and
Medical Image Analysis. Springer; 2013.

22. Breiman L, Friedman J, Stone CJ, Olshen RA. Classification and Regression
Trees (Wadsworth Statistics/Probability). Chapman and Hall/CRC; 1984.

23. Breiman L. Bagging predictors. Machine Learning. 1996;24(2):123–140.

24. Ho TK. The random subspace method for constructing decision forests. IEEE
Trans Pattern Anal Mach Intell. 1998 Aug;20(8):832–844.

25. Geurts P, Ernst D, Wehenkel L. Extremely randomized trees. Machine Learning.
2006;63(1):3–42.

26. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al. Going Deeper
with Convolutions. 2014 Sep;Preprint. Available: arXiv:1409.4842v1. Accessed 19
June 2015.

27. Goodfellow IJ, Bulatov Y, Ibarz J, Arnoud S, Shet V. Multi-digit Number
Recognition from Street View Imagery using Deep Convolutional Neural
Networks. 2013 Dec;Preprint. Available: arXiv:1312.6082v4. Accessed 19 June
2015.
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