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Preface

Stroke is the second most frequent cause of death and a major cause of disability in industrial  

countries. In patients who survive, stroke is generally associated with high socioeconomic costs 

due  to  persistent  disability.  Its  most  frequent  manifestation  is  the  ischemic  stroke,  whose 

diagnosis often involves the acquisition of brain magnetic resonance (MR) scans to assess the 

stroke lesion's presence, location, extent, evolution and other factors. An automated method to 

locate,  segment and quantify  the lesion area would support  clinicians and researchers  alike,  

rendering their findings more robust and reproducible.

New methods for stroke segmentation are regularly proposed. But, more often than desirable, it  

is  difficult  to compare their fitness,  as the reported results are obtained on private datasets.  

Challenges aim to overcome these shortcomings by providing (1) a public dataset that reflects  

the diversity of the problem and (2) a platform for a fair and direct comparison of methods with  

suitable evaluation measures. Thus, the scientific progress is promoted.

With ISLES, we provide such a challenge covering ischemic stroke lesion segmentation in multi-

spectral MRI data. The task is backed by a well established clinical and research motivation and a  

large number of already existing methods. Each team may participate in either one or both of 

two sub-tasks:

SISS Automatic segmentation of ischemic stroke lesion volumes from multi-spectral MRI 

sequences acquired in the sub-acute stroke development stage.

SPES Automatic  segmentation  of  acute  ischemic  stroke  lesion  volumes  from  multi-

spectral MRI sequences for stroke outcome prediction.

The participants downloaded a set of training cases with associated expert segmentations of the 

stroke lesions to train and evaluate their approach, then submitted a short paper describing 

their  method.  After  reviewing  by  the  organizers,  a  total  of  17  articles  were  accepted  and  

compiled into this volume. At the day of the challenge, each teams' results as obtained on an 

independent test set of cases will be revealed and a ranking of methods established.

For the final ranking and more information, visit WWW.ISLES-CHALLENGE.ORG  .
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1 Introduction

Ischemic stroke is the third leading cause of death in industrialized countries [8].
Due to its excellent soft tissue contrast, magnetic resonance imaging (MRI) has
become to be the modality of choice for clinical evaluation of ischemic stroke
lesions [4]. As ischemic stroke lesions usually change over time and secondary
and remote changes may occur, it is therefore necessary characterizing the tissue
changes with different acquisition parameters to produce images of the same
physical space in distinctive spectral signatures [1].

In clinical practice, Diffusion weighted images (DWI), T1-weighted (T1W),
T2-weighted (T2W) and fluid attenuated inversion recovery (FLAIR) images are
often acquired to monitor progression of strokes [7]. In acute stage, hyperintense
signal observed on DWI provides important information about the anatomical
location and extent of the infarcted territory. In more chronic phase, T2W and
FLAIR images are normally used to delineate the final lesion volume. Chronic is-
chemic lesions appear as hyperintense regions in FLAIR with some heterogeneity
within the lesion volume due to ongoing gliosis and demyelination [6].

Early and accurate diagnosis of brain lesion by multi-spectral magnetic res-
onance images is the key for implementing successful therapy and treatment
planning [5]. However, the diagnosis is a very challenging task and can only be
performed by professional neuro-radiologists. Lesion segmentation can improve
this situation and help radiologists diagnose and make treatment plan. However,
due to the variety of the possible shapes, locations, and intensity inhomogeneity,
accurate segmentation is still a challenging task [2]. Manual segmentation can be

? Corresponding Author.
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performed by trained radiologists, but it is a tedious and time consuming task
and is non-reproducible [4].

In this paper, we propose a automatic ischemic stroke lesion segmentation
algorithm in multi-spectral images (DWI, T1-w, T2-w, and FLAIR) using bias
correction embedded FCM and three phase level set method. The rest of this
paper is organized as follows.

2 Method

Before performing lesion segmentation, the input images of different modalities
are first rigidly registered in the same coordinate system. Non-brain tissues are
then removed from the images. Lesion segmentation is finally carried out with
two major steps: 1) preliminary classification of normal brain tissues and lesions
in multi-spectral MR images using an improved FCM with the capability of deal-
ing with intensity inhomogeneities, and 2) boundary refinement of preliminary
classification using a three phase level set designed for multiple spectral images.
More details will be given in the following subsections.

2.1 Image Model

Given an observed MR brain image I defined on a continuous domain Ω ⊂ R2,
its inhomogeneous intensities can be viewed as a product of the true image J
and the bias field b, i.e,

I(x) = b(x)J(x) + n(x) (1)

where x ∈ Ω and n is zero-mean additive noise. For multi-spectral MR images,
we rewrite the above model into the following vector form:

I(x) = b(x) · J(x) + n(x) (2)

where I(x) = (I1(x), I2(x), . . . , IL(x)), b(x) = (b1(x), b2(x), . . . , bL(x)), J(x) =
(J1(x), J2(x), . . . , JL(x)), n(x) = (n1(x), n2(x), . . . , nL(x)), · is the multiplica-
tion operator of corresponding components of two vectors, and L is the total
channel number.

2.2 Preliminary Segmentation of Lesions and Normal Tissues

For each image channel, true image characterizes an intrinsic physical property
of human brain, which ideally takes a specific intensity for each type of tissue
(CSF,WM,GM) and lesions and is therefore assumed to be piecewise constant.
That is to say, the true image Ji of the i-th channel approximately takes distinct
constant values ci1, ci2, ..., and ciN for N − 1 tissues and lesions in disjoint
regions Ω1, Ω2, ..., and ΩN , i.e. Ji(x) ≈ cij for x ∈ Ωj . Then, in view of the
image model in Eq. (2), we have

Ii(x) ≈ bi(x)cij for x ∈ Ωj. (3)
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Therefore, intensities in the set Iij = {Ii(x) : x ∈ Ωj} form a cluster with the
cluster centroidmij ≈ bi(x)cij . This clustering property indicates that intensities
in the image domain Ω can be classified into N clusters with centroids mi1 ≈
bi(x)ci1, mi2 ≈ bi(x)ci2, ..., and miN ≈ bi(x)ciN , respectively. To classify these
intensities, we define

Fi =

∫

Ω

N∑

j=1

λj ‖ Ii(x)− bi(x)cij ‖2 uqj(x)dx. (4)

where is any real number that is not less than 1, λ1, λ2, ..., λN positive weight-
ing coefficients for the N clusters, and uj(x) is the membership function that
indicates whether pixel x belongs to the j-th tissue or not.

For the multi-spectral MR images, we define

F =
L∑

i=1

γiF i =
L∑

i=1

γi

∫

Ω

N∑

j=1

λj ‖ Ii(x)− bi(x)cij ‖2 uqj(x)dx. (5)

where γi are positive weighting coefficient for the i-th spectral image. This ob-
jective function is minimized when high membership values are assigned to pix-
els, intensities of which are close to the centroid, and low membership values
are assigned when the pixels are far from the centroids under the condition∑N
j=1 uj(x) = 1 where uj(x) ∈ [0, 1].
Energy minimization of F can be achieved by alternately minimizing it with

respect to each of its variables. For fixed bi(x) and uj(x), i = 1, 2, ..., L, and
j = 1, 2, ..., N , we minimize F with respect to cij by resolving ∂F

∂cij
= 0. It is

obvious that F is minimized at cij = ĉij , given by

ĉij =

∫
Ω
bi(x)Ii(x)uqj(x)∫
Ω
b2i (x)uqj(x)

(6)

For fixed uj(x) and cij , i = 1, 2, ..., L, and j = 1, 2, ..., N , we minimize F with
respect to bi(x) by resolving ∂F

∂bi(x)
= 0. It can be shown that F is minimized at

bi(x) = b̂i(x), given by

b̂i(x) =
Ii(x)

∑N
j=1 λjci,ju

q
j(x)

∑N
j=1 λjc

2
i,ju

q
j(x)

(7)

For the case q > 1, minimization of F with respect to uj(x) can be imple-
mented by resolving the following Lagrangian equation:

L∑

i=1

γi

∫

Ω

N∑

j=1

λj ‖ Ii(x)− bi(x)cij ‖2 uqj(x)dx− λ




N∑

j=1

uj(x)− 1


 = 0 (8)

where λ is the Lagrangian multiplier and
∑N
j=1 uj(x) = 1 is the extremum

condition. For fixed bi(x) and cij , i = 1, 2, ..., L, and j = 1, 2, ..., N , we take
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partial derivative of the above equation with respect uj(x), set the result to 0,

and resolve the equations with the constraint that
∑N
j=1 uj(x) = 1. Then, it can

be shown that F is minimized at uj(x) = ûj(x), given by

ûj(x) =

(
λj
∑L
i=1 γi‖ Ii(x)− bi(x)ci,j ‖2

) 1
1−q

∑N
k=1

(
λk
∑N
i=1 γi ‖ Ii(x)− bi(x)ci,k ‖2

) 1
1−q

(9)

Preliminary segmentation of CSF, WM, GM and stroke lesions is performed
in this step in an iterative process.

2.3 Lesions Segmentation Using a Three Phase Level Set Method

To refine boundaries of the preliminary segmentation, we propose a three phase
level set formulation as the second step of the proposed method in this subsec-
tion. The proposed level set formulation can be seen as a extension of the local
intensity clustering (LIC) model with the capability of dealing with intensity
inhomogeneities [3]. Preliminary segmentation results are used to initialize the
level set function, such that the zero level contour of the initial level set function
is near the true lesion boundaries.

Consider a relatively small circular neighborhood with a radius ρ centered
at a given point y ∈ Ω, defined by Oy , {x :| x − y |≤ ρ}. For each image
channel, the bias field in the neighborhood can be ignored due to its slowly and
smoothly varying property. Taking into account the constant intensity cij of the
true image J in Ωj , we obtain

bi(x)Ji(x) ≈ bi(y)cij for x ∈ Ωj ∩ Oy. (10)

This local intensity clustering property allows us to apply the standard K-means
algorithm in the following continuous form to classify these local inhomogeneous
intensities in the neighborhood Oy. Therefore, taking all the L channel images
into account, we define

Ey =

N∑

j=1

λj

∫

Oy

(
L∑

i=1

χi ‖ Ii(x)− bi(y)cij ‖2
)
uj(x)dx (11)

where λj is the weighting coefficient used to control size of j-th tissue, χi is the
weighting coefficient for the i-th channel, and uj is the membership function
of Ωj . On account of the inherent property of the membership function uj in
representing the subregion Ωj , Ey can be rewritten as

Ey =

N∑

j=1

λj

∫

Ωj

Kσ(x− y)

(
L∑

i=1

χi ‖ Ii(x)− bi(y)cij ‖2
)
dx (12)

where Kσ is a nonnegative kernel function with the property
∫
|u|≤σKσ(u) = 1.
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To ensure the partition {Ωj}Nj=1 of the entire domain Ω to be the one such
that Ey is minimized for all y in Ω, we minimize the integral of Ey with respect
to y over the entire image domain Ω and define

E =

∫

Ω




N∑

j=1

λj

∫

Ωj

Kσ(x− y)

(
L∑

i=1

χi ‖ Ii(x)− bi(y)cij ‖2
)
dx


 dy. (13)

As our goal is to segment lesions, we consider the background and CSF as
one region, GM and WM as the second region, and the lesions as the third
region. We therefore use M1(φ1, φ2) = (1 − H(φ1))(1 − H(φ2)), M1(φ1, φ2) =
H(φ1)(1 − H(φ2)), and M1(φ1, φ2) = H(φ2) to represent these regions and
rewrite E as

E =

∫

Ω




N∑

j=1

λjej(x)Mj(φ1(x), φ2(x))


 dx (14)

where

ej(x) =

∫

Ω

Kσ(x− y)

(
L∑

i=1

χi ‖ Ii(x)− bi(y)cij ‖2
)
dy (15)

The energy E defined above is used as the data term of the final energy
functional of the proposed level set formulation, which defined by

F = E + P + L. (16)

where P and L are the regularization term and arc length term defined below
to maintain the regularity of the level set functions and smooth the 0-level set
contours of the level set functions, respectively.

P = µ1

∫
1

2
(| Oφ1(x) | −1)2dx + µ2

∫
1

2
(| Oφ2(x) | −1)2dx (17)

L = ν1

∫
| OH(φ1(x)) | dx + ν2

∫
| OH(φ2(x)) | dx (18)

where µ1, µ2, ν1 and ν2 are weighting coefficients andH is the Heaviside function.
For fixed b and c, we minimize the final energy functional F using the stan-

dard gradient descent method and obtain

∂φ1
∂t

= δ(φ1)(1−H(φ2))(λ1e1−λ2e2)+µ1

(
O2φ1 − div

(
Oφ1
| Oφ1 |

))
+ν1δ(φ1)div

(
Oφ1
| Oφ1 |

)
.

(19)
For fixed φ and b, the optimal c that minimizes the final energy functional F is
given by

cij =

∫
Ii(x)Mj(φ1(x), φ2(x))(bi ∗Kσ)(x)dx∫
Mj(φ1(x), φ2(x))(b2i ∗Kσ)(x)dx

, i = 1, 2, ..., L and j = 1, 2, ...,N.

(20)
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For fixed φ and c, the optimal b that minimizes the final energy functional F is
given by

bi =

(
Ii
∑N
j=1 cijMj(φ1, φ2)

)
∗Kσ

∑N
j=1 c

2
ijMj(φ) ∗Kσ

, i = 1, 2, ..., L. (21)

2.4 Implementation

The implementation of the proposed method can be straightforwardly expressed
as follows.
• Step 1. Remove non-brain tissues from the images and register them in the

same coordinate system.
• Step 2. Preliminary classification of normal brain tissues and lesions. Up-

date each variables of energy function defined in Eq. (5) iteratively until conver-
gence criterion has been reached or the iteration number exceeds a predetermined
maximum number.
• Step 3. Initialize the level set functions using preliminary classification

results and keep φ2 fixed. Update each variables of energy functional defined in
Eq. (16) iteratively until convergence criterion has been reached or the iteration
number exceeds a predetermined maximum number.
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A novel framework for sub-acute stroke lesion
segmentation based on random forest

Liang Chen1,2, Paul Bentley2, and Daniel Rueckert1

1 BioMedIA group, Department of Computing, Imperial College London, UK
2 Division of Brain Sciences, Department of Medicine, Imperial College London, UK

Abstract. Neuroimaging in the context of stroke is becoming more and
more important. Quantifying and characterizing stroke lesions is still an
open challenge. In this paper, we propose a novel framework to solve this
problem. The features we use are intensities of patches from multiscale
multimodal magnetic resonance (MR) images. We have built random
forest classifiers for different parts of the whole brain. A leave-one-out
cross-validation result on SISS training data yields 0.55 in Dice score.

1 Introduction

Stroke is a cerebrovascular accident, in which part of the function of the brain
is lost through a decrease of the blood supply [3]. It is the second major cause
of death and it may lead to long-term disability [2]. Advanced neuroimaging
techniques have been widely used in the diagnosis of stroke. It is normally rec-
ommended that patients should undergo either MR or computer tomography
(CT) imaging [4]. Diffusion-weighted imaging (DWI), T2-fluid attenuated inver-
sion recovery (FLAIR), T1-weighted imaging, and T2-weighted imaging should
be included in the MR sequences, which are regarded as the gold standard in
stroke treatment since they are able to show different types of lesions.

Based on MR images, quantifying lesions is important for assessing the pro-
gression of the disease and predicting the functional outcomes for patients. How-
ever, manual delineation of lesions is extremely time-consuming and the inter-
expert consistency is not satisfactory. In this paper, we propose a novel frame-
work for sub-acute stroke lesion segmentation based on the data from the ISLES
challenge, MICCAI 2015.

2 Methods

The ISLES challenge released 28 cases for model training, each of which con-
sists of T1-weighted, T2-weighted, diffusion-weighted, and FLAIR images and
a corresponding manual delineation of the actual lesions. The overview of our
framework is shown in the Figure 1. It consists of six steps.

In the first stage we normalize all images in terms of intensity. For each image
X, we apply the formula X−µ

s , where µ is the mean intensity of the tissue in

9



Fig. 1: Overview of the segmentation process.

X and s is its standard deviation. Notably, we exclude 5% outlier voxels with
minimum and maximum intensities of the tissue, respectively.

Secondly, we extract features from all images. Intensities of multi-scale patches
in each modality are extracted. Specifically, we blur all images at the lower res-
olutions using Gaussian kernels σ = 1 and σ = 2. 5 × 5 patches are extracted
at each scale of each modality. Finally, all patches are converted to vectors and
concatenated into a long vector of dimension 300. In a real clinical scenario,
the acquired axial slices are typically thick and their thickness can vary signifi-
cantly. Resampling them into thin slices leads to additional errors. Therefore we
prefer pixels, rather than voxels as our features. We parcellate the whole brain
into three parts (see Figure 2), including top, middle, and bottom. In the given
dataset, there are 65, 40, and 49 slices in the bottom, middle, and top part,
respectively. Patches are separated according to their locations and classifiers
will be trained for each part individually. The main reason for this is that each
part of the brain contains different anatomical structures. The top part con-
tains relatively homogeneous structures. The middle part contains the ventricles
and the bottom part contains complicated structures such as the cerebellum.
Another reason is that strokes occur most frequently in the middle part of the
brain because the main arteries are located there so that the numbers of lesion
and normal patches are extremely unbalanced in the top and the bottom part.

In the third step, the data is divided into training and testing sets. In this
work, as we will perform the leave-one-out cross-validation, one patient is left
out for validation in each round. The remaining training patches will be selected
to train classifiers. Since we have a limited number of subjects and not all images
contain large lesions, there are significantly less lesion patches than normal ones.
If we sample the same number of normal patches as the lesion ones globally,
there will be many normal patterns that will be excluded and therefore the test
performance will not be satisfactory. We propose to sample different numbers of
normal patches for different parts of the brain. In the bottom part, we randomly
select 5 times normal patches more than lesion ones since we would like to cover
all kinds of normal patterns. For the middle and the top parts, the rates, where
the number of normal patches versus lesion ones are 1.5 and 3, respectively.
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Fig. 2: Illustration of brain parcellation. This is a FLAIR example showing each
part of the brain. The structure of the top part is relatively simple. The mid-
dle part has ventricles and more lesions. The bottom consists of more complex
structurs and less lesions.

Subsequently, we can train three classifiers based on the patches selected
from three parts of the brain. In this paper, the standard random forests [1]
are used as patch classifiers. In each forest, 100 trees are developed. Afterwards,
the classifiers can be evaluated with the test data to distinguish how abnormal
they are. The outputs of the classifiers are the probabilities that characterize the
abnormality of the test patches.

Finally, we perform some post-processing operations. Considering that the
lesions in the brain are typically continuous, we smooth the probabilities of
the slice at the joint of bottom and middle part of the brain by averaging the
probabilities of the neighbouring slices where the outputs given by the classifier of
the bottom volume and the classifier for the middle volume have sharp difference
occasionally. Based on the resulting probabilities, a threshold Θ = 0.6 is applied
to obtain the binary lesion map. For some patients with lacuna infarction, the
lesion appearance on the FLAIR image used to be a hyperintense clot with a
dark ’hole’ inside, which can hardly be detected by the classifiers. Therefore we
perform a morphological operation to fill up these ’holes’.

3 Experiments and Results

The method mentioned above is performed on the given training data and we
achieve the results presented in Table 1. The leave-one-out cross-validation is
used. It is obvious that the results are good if the subject have large lesions. The
very small lesions shown in Case 26 and 27 can never been detected.

4 Discussion and Conclusion

We have presented a novel framework for sub-acute stroke lesion segmentation
and we achieved an average Dice score of 0.55. In the future, we proposed to
collect more data so that there are sufficient data for all kinds of lesions. As
a result, different classifiers can be trained for different conditions, where the
lesion sizes vary.
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Table 1: The results on the SISS training data.

Case ID ASSD Dice Hausdorff Distance Precision Recall

1 0.96 0.93 48.88 0.91 0.94
2 2.15 0.83 52.43 0.75 0.92
3 1.59 0.62 49.75 0.48 0.89
4 2.34 0.79 55.29 0.93 0.69
5 1.44 0.87 45.52 0.85 0.88
6 1.05 0.90 28.46 0.86 0.95
7 1.76 0.86 58.60 0.84 0.88
8 19.4 0.49 94.22 0.35 0.84
9 2.11 0.86 24.19 0.90 0.82
10 5.19 0.67 73.74 0.83 0.56
11 10.09 0.59 92.50 0.43 0.94
12 8.30 0.53 67.60 0.41 0.74
13 12.56 0.23 70.80 0.15 0.57
14 1.55 0.81 81.65 0.89 0.75
15 2.22 0.83 48.93 0.73 0.95
16 40.52 0.02 120.59 0.01 0.14
17 11.02 0.49 93.01 0.67 0.38
18 8.41 0.59 83.96 0.47 0.80
19 13.78 0.16 56.86 0.09 0.69
20 4.44 0.77 126.15 0.81 0.74
21 41.43 0.07 140.13 0.04 0.46
22 6.75 0.52 79.76 0.72 0.41
23 22.80 0.38 90.14 0.25 0.77
24 15.38 0.44 102.51 0.31 0.76
25 9.46 0.60 87.87 0.43 0.97
26 29.92 0 85.65 0 0
27 59.99 0 124.96 0 0
28 11.13 0.67 76.69 0.56 0.56

Average 12.42 ± 14.29 0.55 ± 0.29 77.17 ± 28.60 0.52 ± 0.32 0.68 ± 0.27
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Abstract. We present our 11-layers deep, double-pathway, 3D Convo-
lutional Neural Network, developed for the segmentation of brain lesions.
The developed system segments pathology voxel-wise after processing a
corresponding multi-modal 3D patch at multiple scales. We demonstrate
that it is possible to train such a deep and wide 3D CNN on a small
dataset of 28 cases. Our network yields promising results on the task of
segmenting ischemic stroke lesions, accomplishing a mean Dice of 64%
(66% after postprocessing) on the ISLES 2015 training dataset, rank-
ing among the top entries. Regardless its size, our network is capable of
processing a 3D brain volume in 3 minutes, making it applicable to the
automated analysis of larger study cohorts.

1 Introduction

The blockage of an artery during a stroke may disrupt the supply of oxygen and
other required substances to brain regions, leading to neuronal death. If the blood
flow is restored quickly enough, parts of the affected brain tissue may survive
and gradually recover [1]. Automatic detection of the affected but salvageable
penumbral tissue can accelerate the decision making and treatment of the patient
in the acute clinical setting, increasing the likelihood of a more favourable out-
come. Development of robust and accurate segmentation techniques could also
facilitate the longitudinal monitoring and analysis of stroke lesions which evolve
over time [2] and enable larger-scale studies that can further our understanding
of the relations between tissue damage and functional deficits.

Following their success on challenging tasks in the field of Computer Vision
[3,4,5], Convolutional Neural Networks (CNNs) have been subsequently applied
successfully on a variety of biomedical segmentation problems. Most developed
approaches relied on the adaptation of 2D CNNs for processing 3D volumes
[6,7,8], with difficulties being reported when training of 3D CNNs was attempted.
While these architectures of 2D networks might be successful in some problems,
they are suboptimal in their use of available 3D information. The first pure 3D
CNN reviewed was presented in [9], where it was employed for brain tumour
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segmentation. Regardless of its small size, the system demonstrated excellent
performance and formed the starting point for our approach.

2 Method

Fig. 1: The architecture of one of our earlier networks. Number and dimensions
of the feature maps (FMs) are depicted in the format (Number ×Dimension).
Please consult the text for more details on our latest 11-layer network. Multi-
modal input is not depicted, in order to avoid cluttering the figure.

2.1 Network Architecture

Although inherently classifiers, CNNs can tackle segmentation tasks by casting
them to voxel-wise classification. The network processes a 3D patch around
each voxel of an image. It is trained to predict whether the central voxel is
pathology or normal brain tissue, depending on the content of the surrounding
3D patch. During training, the parameters of the kernels are optimized using
gradient descent, with the target of minimizing the error between the predictions
and the true labels.

One of the limitations in the above setting is that the segmentation of each
voxel is performed solely by processing the contents of a small patch around it.
It is intuitive that greater context is likely to lead to better results. However, a
straight-forward increase in the size of the 3D input patch would prohibitively
increase the memory requirement and computational burden. Our proposed so-
lution is to perform parallel processing of the image at multiple scales. Our net-
work architecture consists of two parallel convolutional pathways, where both
have receptive fields of the same size. The input to the second pathway, however,
is a patch extracted from a subsampled-version of an image, thus allowing it to
efficiently process greater area around each voxel. This architectural design is
presented in figure 1.

Another important feature of our architecture is its full convolutional nature,
which allows its efficient application on larger parts of the image. By providing as
input segments of an image larger than the receptive field of the final layer’s neu-
rons, the network can efficiently process the larger input and provide as output
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predictions for multiple neighbouring voxels. Following [9,5], we also exploit this
feature during training, constructing our training batches by extracting image
segments of size larger than the network’s receptive field.

An earlier version of our system is depicted in figure 1. Our final network
resulted from the replacement of each convolutional layer with a kernel of size
53 with two layers with 33 kernels and the addition of another layer before the
final classification. The final 11-layers deep network exhibited significantly more
accurate segmentation performance. The network is regularised using Dropout
[10] at the 9th and 10th layers with a rate of 50%, on top of L1 (10−6) and
L2 (10−4) regularisation. Initial learning rate was set at 0.01 and was gradually
reduced during training, along with constant momentum equal to 0.6. ReLu ac-
tivation functions [11] and batch-normalisation [4] were used for the acceleration
of convergence that they provide. The training time required for convergence of
the final system is roughly one day using a NVIDIA GTX Titan Black GPU.
Segmentation of a 3D scan of a brain with four modalities requires 3 minutes.

2.2 Data Preprocessing, Augmentation and Postprocessing

The modalities of each patient were individually normalised to have zero mean
and unary standard deviation, as preliminary experiments showed the networks
to behave better on input in this intensity range. In order to regularise the
network, we augment the dataset by reflecting the images with respect to the
sagittal axes. This processing, along with the subsampling of the images, is per-
formed in parallel with training, when the image segments for the next training
iteration are extracted, thus effectively adds no computational time. The output
of the network was postprocessed by our version of the CRF presented in [12],
extended in order to be able to process 3D biomedical images.

3 Evaluation

The system was evaluated on the training dataset of the ISLES 2015 Challenge.
Four modalities (Flair, DWI, T1, T2) were available for 28 cases of patients with
ischemic stroke lesions. We performed 5-fold validation for this evaluation. Our
system achieved a mean Dice coefficient of 66%, with our network alone achieving
64% and an additional increase of 2% achieved through post-processing using
the CRF. In figure 2 we present our results for each case and the current results
on the evaluation platform, where we rank among the top entries.

4 Conclusion and Discussion

Our architecture exhibits promising performance, with capabilities for delicate
segmentations. Difficulties are observed in the segmentation of lesions of partic-
ularly small size. The separation of lesions into different categories, for instance
according to their size, and their treatment by separate classifiers could simplify
the task for each learner and help alleviating the problem.
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(a) (b)

Fig. 2: (a) Top: Volume of lesions for each case according to manual (black)
and our system’s segmentation (red). Bottom: DICE coefficient for our system’s
segmentation for each case, along with mean (continuous) and median (dashed)
values. (b) Online evaluation on training data, with our system ranking 1st and
2nd with respect to mean ASSD and Dice metrics at the time of writing.
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Abstract. From clinical practise as well as research methods rises the
need for accurate, reproducible and reliable segmentation of ischemic
stroke lesions from brain MR scans. This article details a contribution to
the Sub-acute Ischemic Stroke Lesion Segmentation (SISS) sub-task of
the Ischemic Stroke Lesion Segmentations Challenge (ISLES), organized
in conjunction with the MICCAI 2015. The proposed method bases on
previous works, which showed the approach to handle various stroke
appearances well and to be applicable to potentially flawed data acquired
in clinical routine. The method is described in detail and all chosen
parameter values are disclosed. Preliminary results on the training data
places the approach among the highest ranking contributions.

Keywords: ischemic stroke, lesion segmentation, magnetic resonance imaging,
brain MRI, random forest, RDF

1 Introduction

Ischemic stroke is caused by an obstruction of the blood supply to the brain and
the subsequent death of brain tissue. Its diagnosis often involves the acquisition
of brain magnetic resonance (MR) scans to assess the strokes presence, location,
extent, evolution and other factors. An automated method to locate, segment
and quantify the lesion area could support the clinicians and render their find-
ings more robust and reproducible. Another demand for automatic stroke lesion
segmentation comes from neuroscientists, who employ a research method termed
lesion to symptom mapping, which is used to detect correlations between brain
areas and cognitive functions by means of negative samples [4]. A number of
methods for stroke lesion segmentation have been proposed over the years [2, 8,
12, 3, 13], but none proofed satisfactory to date [11]. The ISLES 2015 challenge
offers the first platform for researchers to compare their methods directly and
fairly. Our contribution has been previously published [7] and showed good re-
sults. It is based on carefully selected features extracted from the MR sequences
and used to train a random forest (RF).
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2 Method

The challenge’s training data consists of multi-spectral (T1, T2, Flair, DWI)
scans of 28 patients displaying sub-acute ischemic stroke. A highly diverse range
of stroke types is supplied, ranging from large, single-hemisphere MCA to small,
embolic cerebellum strokes. Other complexities are non-stroke white matter le-
sions, midline shifts, ventricular enhancement and the presence of haemorrhages.
For training, the manual segmentations of a single expert rater has been pro-
vided. For the testing data, two distinct ground truth will be supplied. More
details on the data can be found on www.isles-challenge.org.

2.1 Pre-processing

The image data is provided with a 1mm isotropic resolution, already co-registered
and skull-stripped. Nevertheless, the training cases of the challenge display high
intensity differences, a normal occurrence for MRI, where intensity ranges are
not standardized. With a learning based intensity standardization method im-
plemented in MedPy [6] and based on [9] we harmonize each sequences intensity
profile after a prior bias-correction step with CMTK [5].

2.2 Forest classifier

We employ the RF classifier implemented in [10], which is similar to the propo-
sitions made by [1]. The classification of brain lesions in MRI is a complex task
with high levels of noise [7], hence a sufficiently large number of trees must be
trained.

2.3 Features

The primary distinction criteria for identifying pathological tissue of stroke le-
sions is the MR intensity in the different sequences. The bulk of our voxel-wise
features therefore bases on the intensity values.

intensity First feature is the voxel’s intensity value.

gaussian Due to the often low signal-to-noise ratio in MR scans and intensity
inhomogeneities of the tissue types, we furthermore regard each voxel’s value
after a smoothing of the volume with a 3D Gaussian kernel at three sizes: σ =
3, 5, 7 mm.

hemispheric difference While stroke can affect both hemispheres, it usually does
not display symmetric properties. Therefore, we extract the hemispheric differ-
ence (in intensities) after a Gaussian smoothing of σ = 1, 3, 5mm to account
for noise. Here, the central line of the saggital view is taken as sufficiently close
approximation of the sagittal midline.
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local histogram Another employed feature is the local histogram, as proposed
in [7], which provides information about the intensity distribution in a small
neighbourhood around each voxel. The neighbourhoods considered were R =
53, 103, 153 mm, the histogram was fixed to 11 bins.

center distance Finally, we extract the distance to the image center (assumed
here to coincide roughly with the brain’s center of mass) in mm as final feature.
Note that this is not intensity based, but rather discloses each voxel’s rough
location inside the brain.

All features are extracted from each of the MR sequence, hence in total we
obtain 163 values per multi-spectral voxel. Note that all of these features are
implemented in MedPy [6].

2.4 Post-processing

After thresholding the a-posteriori class probability maps for a crisp segmenta-
tion, all unconnected components with a size smaller than 1000 ml are removed
under the assumption that they represent outliers. In all remaining binary com-
ponents possibly existing holes are closed and a binary dilation of size 1 mm
applied to compensate for the methods tendency to under-segment the stroke
lesions slightly.

3 Experiments

3.1 Training choices and parameter values

For training our RF, we sample 1,000,000 voxels randomly from all training
cases. The ratios between classes in each case are kept intact (i.e. stroke class
samples will be highly under-represented). A total of 50 trees are trained for
the forest. As split criteria the Gini impurity is employed, a maximum of

√
163

features is considered at each node. No growth restrictions are imposed. The
a-posteriori class probabilities produced by the forest are thresholded at a value
of 0.4, to counter a slight under-segmentation.

3.2 Preliminary results

Online evaluation is provided with the Dice’s coefficient (DC), the average symm-
teric surface distance (ASSD) and the Hausdorff distance (HD) as quality met-
rics. Using a leave-one-out evaluation scheme, we have obtained the scores pre-
sented in Tab. 1.
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Table 1. Mean evaluation results and standard deviation on 28 training cases. See the
text for details on the abbreviations employed.

DC ASSD HD

28 cases 0.58 ± 0.29 7.91 ± 13.09 34 ± 29

4 Discussion and conclusion

The favourable placement of our proposed method among the contributions con-
firms the suitability of our approach for stroke lesion segmentation as has already
been observed in [7].

By employing RFs, we have a powerful classifier at our hand that is robust
against uninformative features, generalized well and produces good results for a
wide range of parameters. Mixing widely used with specially designed features,
we can successfully learn to discriminate between ischemic stroke lesion and
other, not only healthy, tissue.

On the downside, RFs suffer from the same drawbacks as all other machine
learning based methods: The training set must be carefully chosen and types of
cases not present in the training data can not be processed.
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Abstract. This work proposes fully automatic ischemic stroke lesion
segmentation in multimodality brain MRI by extending our prior brain
tumor segmentation (BTS) work [1]. The extensions of the BTS method
include development of relevant MR image intensity inhomogeneity cor-
rection, several new features and feature ranking methods. We charac-
terized brain lesions with multiple features such as piece-wise triangular
prism surface area (PTPSA), multi-fractal Brownian motion (mBm),
structure tensor based local gradient, regular intensities and intensity
differences of MRI modalities. As in BTS, we used classical Random
Forest (RF) [2] to classify the brain tissues as lesion or background.The
method is evaluated on 28 patients’ images having sub-acute ischemic
stroke lesions from ISLES2015 SISS challenge dataset [3].

1 Methods

The success of our prior texture based BTS works[1] [4] [5] had driven the moti-
vation of this works. Although our prior BTS work showed excellent performance
in tumor segmentation, the methods needed brain lesion specific adaptation such
as a new intensity inhomogeneity correction [6] technique for MR images, and
introduction of a new local gradient feature information [7] and as well as a min-
imum redundancy maximum relevance (mRMR) feature selection [8] method.
The overall flow diagram of our proposed lesion segmentation method is shown
in Figure 1.

The detail description of most of the above methods can be found in our
prior BTS publications[1] [4]. We briefly discuss the additional steps as follows:

Local Texture Feature Extraction: In our prior works we extract the local
texture (PTPSA, mBm) features after the preprocessing. However, the prepro-
cessing (skull-stripping and slice co-registration) step is skipped in this work
since the images are already preprocessed. Note the local texture features are
extracted before intensity inhomogeneity correction. As described in [9], the
multi-scale wavelets do not require these corrections.

Intensity Inhomogeneity correction: It comprises of two steps. In the first
step we perform 10 point histogram matching, where the reference images of
four modalities are arbitrarily set from a single patient (in this case, the first
patient pat001) data. Next step is normalizing all the intensity values around the
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mean intensity value of cerebrospinal fluid (CSF). The method is described in [6].
However, instead of performing a two-class classification (e.g., CSF vs. Rest), we
simply threshold the intensity differences among the modalities and obtain the
CSF mask. We consider the histogram matched images, the normalized image
differences among the modalities and the CSF mask as features for subsequent
processing.

Structure Tensor based Local Gradient feature: Eigen value decomposition of
the 2D structure tensor matrix [7] is performed to capture the local gradient
information. From all four modalities Eigen values (λ1, λ2) are used as addi-
tional new features which allow a more precise description of the local gradient
characteristics.

Feature ranking and selection: Since all the features are not equally impor-
tant and redundancy among the features degrades the classifier’s performance, a
mutual information based mRMR[8] feature ranking technique is implemented.
From the feature list, we choose 19 top ranked features out of 35 total features.
The feature selection method show that intensity features in Flair and DWI MRI
modalities as well as mBm, intensity difference, and local gradients features ex-
tracted from Flair and DWI modalities show the most discriminative properties
respectively. This observation is also confirmed in other relevant works [10].

2 Results and Discussions

We obtain 2D segmented tissues using the predicted pixel labels from RF. These
2D segments are then stacked to generate volume image. Example lesion seg-
ments using two slices are shown in Figure 2.

Quantitative evaluation: We evaluate our preliminary lesion segmentation
results using 28 training patients’ obtained from the ISLES-2015 SISS chal-
lenge dataset. The performance efficiency is evaluated by across patient cross-
validation, where odd numbered patients are used for training while the even
numbered patients’ are used for testing, and vice versa. On an average 59% Dice
score overlap with 23% standard deviation is obtained from across the patient
cross-validation. We notice comparatively better performance for lesions with
larger size. Patientwise quantitative Dice overlap are presented in Table 1.
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Fig. 1. Generic flow diagram of the proposed method
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Fig. 2. Segmented lesions with corresponding input and ground-truth images. Each
row represents an example set of multimodality MRI slices; Input: (a) T1, (b) T2, (c)
Flair (d) DWI (e) Segmented lesion (f) ground-truth.

Pat P01 P02 P03 P04 P05 P06 P07 P08 P09 P10 P11 P12 P13 P14

DC 0.89 0.75 0.35 0.75 0.81 0.89 0.81 0.77 0.83 0.53 0.60 0.65 0.13 0.80

Pat P15 P16 P17 P18 P19 P20 P21 P22 P23 P24 P25 P26 P27 P28

DC 0.74 0.47 0.51 0.55 0.26 0.73 0.08 0.55 0.56 0.56 0.62 0.27 0.26 0.79

Table 1. Summary of quantitative Dice(DC) score for 28 patients: Avg. 59%, std. 23%

3 Conclusion

This work proposes an automatic lesion segmentation method and cross vali-
dation using ISLES-2015 SISS challenge dataset. Experimental results with 28
clinical patient data sonfirm the efficacy of our method for sub-acute ischemic
stroke lesion segmentation. The training results show comparable performance
when compared to other state-of-the art works posted on the VSD website[3].
Note the evaluation results reported here are obtained using the ground-truth
provided on the VSD web on our local machines. We notice a considerable num-
ber of false positives in our detections that compromise the overall results. Our
future works include study of more effective features and sophisticated feature
selection techniques. We also plan to study deep neural network based segmen-
tation technique to develop a generalize method for both sub-acute and acute
ischemic lesion segmentation. At the time of writing this report, the evaluation
process had been in-process in the online evaluation tool posted on the VSD
website [3]. The cross-validation results from VSD web will be reported in the
next iteration of this submission.
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Abstract. We propose a supervised method based on cascaded extremely
randomised forests for lesion segmentation, and evaluate the pipeline in
the MICCAI Ischemic Stroke Lesion Segmentation (ISLES) challenge.

1 Introduction

In ischemic stroke, reduced blood flow to part of the brain results in localised
tissue damage and eventual necrosis. Automated localisation and segmentation
of the stroke lesion in patients is of great interest to clinicians and researchers
alike, enabling them to differentiate potentially salvageable and permanently
damaged tissue, identify effective treatments, and follow progression of the
ischemic lesion [5]. The MICCAI Ischemic Stroke Lesion Segmentation (ISLES)
challenge aims to evaluate and compare state-of-the-art methods, by providing
two multi-modal MRI datasets for sub-acute ischemic stroke lesion segmentation
(SISS) and for acute stroke outcome and penumbra estimation (SPES).

In this paper, we propose a supervised method based on cascaded extremely
randomised forest classifiers for stroke lesion segmentation, and describe a single
pipeline to be used for both datasets. After nested cross-validation on the training
data, we obtained an average Dice score of 57 % for the SISS data and 82 % for
the SPES dataset, which is on par with other contestants.

2 Method

2.1 Preprocessing

At first, the non-parametric images in both datasets were corrected for RF
inhomogeneity. We estimated the bias field on the T1w-images using FSL FAST [2],
using a 3-tissue model and a bias field smoothing filter of 40 mm full-width half
maximum. The elevated smoothing parameter (default is 20 mm) was chosen to
improve robustness to the pathology. The estimated bias field was subsequently
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applied to correct all T1w- and T2w-images, as well as the Flair and DWI images
in the SISS dataset. The ADC images and the perfusion measures in the SPES
dataset were not corrected, as these images are already normalised or assumed
to be in physical units.

Secondly, cross-subject histogram normalisation was done for each dataset
and each modality. To this end, we used a linear intensity rescaling based on two
percentile intensities of the histogram. These were heuristically determined based
on the histogram profile of a given modality across all subjects of each dataset.
For SISS we used 20 % and 99 % for T1, T2, and DWI, and 30 % and 90 % for
Flair. For SPES we used 30 % and 90 % for T1, 20 % and 99 % for T2, 20 % and
90 % for DWI (ADC), and 20 % and 50 % for TTP. No intensity normalisation
was applied to Tmax, CBF, and CBV.

Additionally, we wish to include spatial features in the classifier as well.
Therefore, we registered all subjects T1w-images to the MNI152 template using a
12 degrees of freedom affine transformation and normalised mutual information,
as implemented in FSL FLIRT [2]. The resulting transformation matrices are
converted to (affine) deformation fields which provide, for each voxel in native
space, the corresponding coordinate in MNI space. As such, no image interpolation
is needed and the subsequent classifier training can be done in native space.

2.2 Classifier

We decided to use a voxel-wise classification approach for both segmentation tasks.
That is, we build a classifier that, given a set of features of a voxel, estimates
the probability that this voxel is part of a lesion. To increase computational
efficiency and spatial consistency, we use a cascaded approach. First, the to-be-
classified voxel is given to a classifier that uses a limited set of features. If this
classifier decides with very high probability that the voxel is non-lesion, then this
probability is the final answer. Else, the voxel is given to the second classifier
that uses a large set of features. Then, the voxels which were not classified as
non-lesion with very high probability, are given to a third classifier. This last
classifier uses the same features as the second classifier and additionally the
earlier computed probabilities of that voxel and its neighbouring voxels.

We use extremely randomised trees [1] as a base classifier. This classifier
builds an ensemble of decision trees, but by randomising the selection of cut-point
in the decision tree nodes, its training is significantly faster than the training of
random forests while achieving comparable accuracy. We use the implementation
provided by scikit-learn [4].

2.3 Features

Since the classifier is the same for both challenges, the features are constructed
in a similar fashion.

For the SPES sub-challenge, the first cascade uses the T1c intensity. The
second cascade uses the intensity of the T1c, T2, TTP, Tmax and DWI images
smoothed with a sigma of 0 – 6 mm. It also has for TTP and Tmax the 0.5, 0.75
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and 0.9 percentiles and for DWI the 0.1 and 0.25 percentiles of its neighbourhood
for varying radii (4 – 12 mm). Finally, it has the MNI-coordinates. The third
cascade uses the same features as the latter and additionally it has the earlier
estimated probabilities smoothed with a sigma of 0 – 8 mm and the 0.5, 0.75 and
0.9 percentiles of it neighbourhood for varying radii (4 – 8 mm).

For the SISS sub-challenge, the first cascade uses the T1 intensity. The second
cascade uses the intensity of the T1, T2, Flair and and DWI images smoothed
with a sigma of 0 – 8 mm. It also has for Flair and DWI the 0.5, 0.75 and 0.9
percentiles of its neighbourhood for varying radii (4 – 8 mm). Finally, it uses the
MNI-coordinates. The third cascade uses the same features as the latter and
additionally it has the earlier estimated probabilities smoothed with a sigma of 0
– 8 mm and the 0.5, 0.75 and 0.9 percentiles of it neighbourhood for varying radii
(4 – 8 mm).

2.4 Probability threshold

After the voxel-wise classification, we have for every voxel a probability of
belonging to a lesion. However, the challenge requires a binary segmentation and
hence we need to threshold the resulting probabilities. Instead of using a fixed
threshold for all images, we use a novel technique to find the optimal threshold.

A voxel x is part of the lesion with probability P (x), as estimated by the
classifier. Given that the probability estimates are correct, the Dice score obtained
with threshold Pt will be:

Dice(Pt) =
2 |GT ∩ segmentation|
|GT | ∪ |segmentation| =

2
∑

x I[P (x) > Pt]P (x)∑
x P (x) +

∑
x I[P (x) > Pt]

, (1)

with I the indicator function. We exhaustively search for the optimal threshold.

3 Results

The performance of the proposed segmentation method is evaluated in the
online submission system of the challenge, and relies on the average symmetric
surface distance (ASSD), the Dice overlap coefficient, and the Hausdorff distance.
Additionally, precision and recall are reported to discriminate between over- and
under-segmentation respectively. The results of cross-validation on the training
data are reported in Table 1. Example segmentations of median and maximum
overlap are shown in Fig. 1.

4 Discussion and Conclusion

We presented a supervised method for stroke lesion segmentation, based on
cascaded extremely randomised forests. The cascaded approach showed strong
improvement over a single voxel-wise classifier, and allows to take neighbourhood
information into account while still limiting the number of features and the
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Table 1. Segmentation results on the training data, reported as average symmetric
surface distance (ASSD), Dice coefficient, Hausdorff distance, precision, and recall.

ASSD (mm) Dice Hausdorff (mm) Precision Recall

avg std avg std avg std avg std avg std

SISS 9.36 13.85 0.57 0.28 53.88 34.58 0.58 0.33 0.68 0.21
SPES 2.03 1.35 0.82 0.07 44.29 27.59 0.81 0.14 0.85 0.07

Fig. 1. Comparison between the ground-truth labels (green) and the predicted segmen-
tation (red), shown for selected examples with median and maximum Dice coefficient.
SISS Flair dataset on the left; SPES DWI (ADC) dataset on the right.

required computation time. The method works well on both datasets, although
the inter-subject variability is rather large in the SISS data. Given that this is
the case for other contestants as well, it would be interesting to have access to
the inter-observer variability of the ground-truth segmentations.

Future work may improve upon this method by revising the histogram nor-
malisation. A threshold-based classifier such as ours is sensitive to the intensity
scaling, and the current linear approach is sub-optimal. More advanced, non-linear
approaches such as Meier et al. [3] could help in this regard.
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1 Statistical template

In order to enable voxel-wise comparisons across subjects, all T1, T2, Flair and
DWI volumes, as well as the volumes containing manual segmentations, were
warped to a common template. The template was generated by the Advanced
Normalization Tools (ANTs) software version 2.1.0rc3 [1] using buildtemplatepar-
allel script, greedy SyN transformation model, cross-correlation similarity met-
ric, 30 × 90 × 20 interations and the T1 images of the training dataset. All T1
images were deformed to this template with ANTs software using Affine transfor-
mation model for rigid registration and SyN transformation model for warping.
The detailed parameters are given in Appendix. This defined a transformation
which was applied to T2, Flair, DWI and manual segmentation volumes. All MR
images were masked with a volume containing only in-brain voxels to minimize
the effect of background to the automatic segmentation of ischemic stroke lesion
volumes.
Images in the common template space representing mean and standard deviation
(std) of voxel intensities over subjects were calculated voxel-by-voxel, separately
for T1, T2, Flair and DWI images. We call these images statistical templates
from now on. Note that the lesion voxels were not included in the calculation of
average and std. Because most subjects in the training dataset had lesions on
the left hemisphere, there were fewer voxels contributing to the mean and std
on the left; as a result, the left hemisphere appeared slightly distorted on the
template images. In order to compensate for this left-right bias, the mean and
std images were additionally averaged over left and right hemispheres. Further-
more, the images were smoothed with a 3D Gaussian kernel (FWHM 3 mm) to
decrease the effect of registration inaccuracies.

2 Random Forest classification algorithm

The initial segmentation was predicted with an ensemble learning method. A
set of features was derived from the training data and fed to a Random Forest
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[2] classification algorithm implemented in Scikit-learn version 0.16.dev [3]. The
Random Forest algorithm combines classification results from a number of de-
cision trees. Several trees are constructed and fitted to the data during training
phase, using a random subset of features to train each tree. The final classifica-
tion is the mode of the classes obtained from all individual trees. Random Forest
classification greatly reduces overfitting, which is a common problem for simple
decision tree classifiers [2]. In this study, the performance of the classifier was
tested with leave-one-out cross-validation, in which one subject from the train-
ing dataset was used for testing and the rest for training the classifier, and the
procedure was repeated for all subjects. The classifier returned both the binary
classifications and probabilities (in range 0-1) that a voxel belonged to the lesion
area.

3 Classifier training

16 features were extracted from the MR images for subsequent classification. Z-
score normalized voxel intensities of T1, T2, Flair and DWI images constituted
features 1-4. Features 5-8 represented the Z-score deviations from global aver-
age images, calculated separately for each sequence by subtracting the global
mean and dividing with the global std. The purpose of these features was to
find regions showing large deviations from the normal brain, which likely indi-
cates presence of a lesion. Features 9-12 were obtained by smoothing the original
images with a 3D Gaussian kernel (FWHM 3 mm), thus including information
from the local neighborhood of each voxel. Smoothing was expected to improve
classification since it may reduce the effect of registration inaccuracies. Features
13-16 represented local asymmetry, obtained by comparing voxel intensities on
one hemisphere to the corresponding voxel intensities on the other hemisphere.
The motivation for calculating local asymmetry was the fact that lesions rarely
occur symmetrically on both hemispheres. The asymmetry measure was cal-
culated simply by subtracting the original smoothed image from the left-right
-mirrored smoothed image.
In order to decrease computational time and avoid classifier overfitting, we only
collected the aforementioned features from a randomly selected subset of voxels.
The maximum number of lesion voxels sampled from each subject was set to
300, and in cases where the lesion was smaller than that, all lesion voxels were
sampled. The ratio of lesion and non-lesion voxels per subject was kept constant,
such that twice as many voxels were sampled from non-lesion area as from lesion
area; thus, the maximum number of non-lesion voxels per subject was 600.
For the Random Forest classifier, the training set was resampled to train a total
of 300 decision trees. 4 features were used to obtain the best split at each indi-
vidual tree. The quality of each split was described by Gini impurity [2]. The
trees were grown unlimitedly, i.e. until each leaf contained only samples of a sin-
gle class. All parameters and default values used by Scikit-learn’s RandomForest
classifier are listed in Appendix.
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4 Contextual clustering

The segmentation results obtained with the Random Forest method were further
improved with contextual clustering (CC). The clustering method was based on
a Markov random fields (MRF) prior and iterated conditional modes (ICM, [4])
algorithm, which were previously used for analysis of functional magnetic reso-
nance imaging (fMRI) data [5]. The basic assumption in contextual clustering
is that neighboring voxels tend to belong to the same class. Furthermore, it is
assumed that the intensity distribution of background voxels (in present case,
non-lesion voxels) is standard normal, but the distribution of lesion voxels is
unknown.

The CC algorithm modified for this study consisted of the following steps:

1. Fit a gamma distribution to all nonzero voxels of the probability map given
by the random forest classifier. Fitting is done using MATLABs (R2015a)
function fitdist with default parameters.

2. Transform the probability map values to standard normal distribution by
calculating the inverse normal distribution function (MATLAB function
norminv) from the cumulative distribution function (MATLAB function cdf )
of gamma distribution. This gives image N.

3. Define the parameter T for contextual clustering [5] using the fitted gamma
distribution:
T = −norminv(cdf(gamma,D)), where gamma is the fitted gamma dis-
tribution, and D some threshold. In this study we used empirically chosen
D = 0.6, which gave reasonable results with training data.

4. Run the CC algorithm [5] using the image N, neighborhood weight coefficient
β = T 2/6 and a threshold D = 0.6. The voxels will be reclassified to 0 or 1,
corresponding to non-lesion and lesion, respectively.

5. Repeat steps 1-4 with only the voxels classified as non-lesion in the first run
of CC.

Finally, all automatically segmented images were transformed back to each
subject’s native space using inverse transformation and nearest neighbor inter-
polation. After transformation it was possible to compare the automatic seg-
mentations with the manual lesion segmentations. The classification accuracy
was evaluated with the script provided at ISLES web page (http://www.isles-
challenge.org), including measurements for Dice coefficient, average symmetric
surface distance (ASSD), Hausdorff distance, precision and recall.

5 Testing phase

The test data will be spatially normalized to the common template using the
parameters listed in Appendix, but without the lesion images (–x option). Af-
ter that, the trained Random Forest classifier and contextual clustering will be
applied to the data.

33



References

1. Avants, B. B., Tustison, N. J., Song, G., Cook, P. A., Klein, A., & Gee, J. C.
(2011). A reproducible evaluation of ANTs similarity metric performance in brain
image registration. Neuroimage, 54(3), 2033-2044.

2. Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.
3. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,

Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M. & Duchesnay, E. (2011). Scikit-learn:
Machine learning in Python. The Journal of Machine Learning Research, 12, 2825-
2830.

4. Besag, J. (1986). On the statistical analysis of dirty pictures. Journal of the Royal
Statistical Society. Series B (Methodological), 259-302.

5. Salli, E., Aronen, H. J., Savolainen, S., Korvenoja, A., & Visa, A. (2001). Contextual
clustering for analysis of functional MRI data. Medical Imaging, IEEE Transactions
on, 20(5), 403-414.

Appendix

Generation of templates
The common template was done in two phases. First, the initial template was
formed:
buildtemplateparallel.sh -d 3 -m 1x0x0 -n 0 -r 1 -t GR -s CC -o [initial template
image] -c 0 -j 1 [T1 images]

After that, the final template was built using the initial template:
buildtemplateparallel.sh -d 3 -m 30x90x20 -n 0 -r 0 -t GR -s CC -o [template
image] -z [initial template image] -c 0 [T1 images]

Warping of T1 images to common template was done using antsRegistration
tool and the following parameters:
–metric MI[template image, T1 image,1,32] –transform affine[0.25] –convergence
10000x10000x10000x10000x10000 –shrink factors 5x4x3x2x1 –smoothing-sigmas
4x3x2x1x0 –metric CC[template image, T1 image,1,5] –transform SyN[0.25,3.0,0.0]
–convergence 50x35x15 –shrink factors 3x2x1 –smoothing-sigmas 2x1x0 -use-
histogram-matching 1 –x [lesion image]

Parameters for Random Forest classifier
Scikit-learn’s function sklearn.ensemble.RandomForestClassifier was used with
the following parameters:
n estimators=300, criterion=’gini’, max depth=None, min samples split=2,
min samples leaf=1, min weight fraction leaf=0.0, max features=4,
max leaf nodes=None, bootstrap=True, oob score=False, n jobs=1,
random state=None, verbose=0, warm start=False, class weight=None
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Abstract. Stroke is a common cause of sudden death and disability
worldwide. In clinical practice, brain magnetic resonance (MR) scans
are used to assess the stroke lesion presence. In this work, we have
built a fully automatic stroke lesion segmentation system using 3D brain
magnetic resonance (MR) data. The system contains a 3D registration
framework and a 3D multi-random forest model trained from the data
provided by the Ischemic Stroke Lesion Segmentation (ISLES) challenge
of the 18th International Conference on Medical Image Computing and
Computer Assisted Intervention. The preliminary test results show that
the presented system is capable to detect stroke lesion from 3D brain
MRI data.

1 Introduction

Stroke is a common cause of sudden death and disability worldwide. In clini-
cal practice, brain magnetic resonance (MR) scans are used to assess the stroke
lesion presence. A fully automatic random forest based stroke lesion 3D segmen-
tation approach is built. A 3D segmentation framework with backward registra-
tion and forward registration is developed for processing the 3D brain data. A
machine learning model is trained using the training data provided by the Is-
chemic Stroke Lesion Segmentation (ISLES) challenge of the 18th International
Conference on Medical Image Computing and Computer Assisted Intervention.
The preliminary test results show that the presented system is capable to detect
stroke lesion from 3D brain MRI data. The outline of this paper is as follows.
Section 2 presents the proposed method with the preliminary test results, and
section 3 concludes the paper.

2 Method with Preliminary Test Results

A fully automatic machine learning based stroke lesion 3D segmentation ap-
proach is built. The data is trained using random forest [2] with the parameters
as presented in the Table 1. A large multiple random forest model is developed
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to generate potential candidates, and for every five stacks in Z direction, a ran-
dom forest is trained. In data preparation, the regions of interest (ROI) are
extracted to produce training data with two classes using the contour tracing
algorithm [1], and 275 image features categorized in 24 types are extracted for
training, as illustrated in figure 1.

Obtaining the potential candidates from the machine learning model men-
tioned above, a 3D registration framework with backward and forward searching
is applied to produce optimal 3D predictions, and in the experiments, the 80th
stack is selected as the referenced frame for the 3D registration framework. The
system flowchart is presented in the figure 2. Figure 3 shows the inputs and
system outputs of a 3D brain MRI sample.

Table 1. The parameters used for the multiple random forest model

for each random forest

The maximum depth of the trees 50
The number of trees to be generated 50
The number of features to used 275
The random number seed to be used 1

for the entire 3D segmentation system

The number of stacks to be used to train one random forest 5
The total number of random forests to be built N/5

N: The maximum number of stacks in Z direction.

Fig. 1. Features used for training
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Fig. 2. System flowchart
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Fig. 3. Inputs and System outputs of a 3D brain MRI sample

3 Conclusion

We have presented a fully automatic stroke lesion segmentation system using
3D brain magnetic resonance (MR) data. The preliminary test results show that
the presented system is capable to detect stroke lesion from 3D brain MRI data.
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Abstract. In machine learning larger databases are usually associated
with higher classification accuracy due to better generalization. In some
medical applications with highly variable expressions of pathologies ex-
actly this generalization may lead to non-optimal classifiers. Here ap-
proaches incorporating these varying manifestations of a disease in a
flexible way to improve the classification are needed. This paper there-
fore presents a method to learn from a large training base consisting only
of sparsly annotated data, adaptively selecting optimal training samples
for given input data. This way heterogeneous databases are supported
two-fold. First, by being able to deal with sparsely annotated data allows
a quick inclusion of new data sets. Secondly, by adapting the classifiers
according to the input data the heterogeneity of the database is further
exploited.

Keywords: Adaptive Learning, Lession Segmentation, Machine Learn-
ing, Random Forest

1 Motivation

Learning from large datasets becomes more and more important in computer
vision. This is also true for machine learning in the context of medical image
computing, but poses special challenges. The data, that are used here are usually
highly individual – not only because of the variety of imaging modalities and
imaging configurations but also because pathological changes have a great variety
of appearances. This leads to new challenges for machine learning in medical
imaging: a) how do we create large training sets covering the diversity of a
pathology and b) how to incorporate such heterogeneity in a beneficial way. We
propose a new algorithm that faces these challenges. Building on prior work
we use an algorithm that allows learning from sparse and unambiguous regions
(SURs) and enhance it with a new method were classifiers are only trained on
similar data. We call this approach ’Input Data Adapted Learning’ (IDAL).

2 Overview

Instead of training a single classifier that is used to predict all unseen images we
propose to adaptively train a new classifier for every new image. This allows to
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use only few, but similar images during training. While such an approach makes
a classifier less general, we expect that the so-trained classifier is better suited
to deal with the afore mentioned heterogeneity.

We realized this approach with a three-staged algorithm (Fig. 1). During the
first stage, that is performed offline like traditional classifier training, we train
an similarity classifier (SC) which can group similar images based on a similarity
measure.

The offline trained SC is used in the second stage – the online training – to
find images that are similar to the new, unlabeled images. Based on this indi-
vidual, input-dependent subset of training images, a new voxel-based classifier
(VC) is trained. For this, we used the approach presented in [5] which allows
to train a voxel-based classifier (VC) from sparsely and unambiguously labeled
regions (SURs). This VC is then used in the last stage to label each voxel of the
new image, leading to the prediction mask.

Fig. 1. Overview of the three stages used for our algorithm.

3 Preprocessing

A simple preprocessing is applied before the images where used for training or
prediction. Our brainmask includes all voxels for which neither T1 nor T2 are
zero.

We normalize all MR-images to a CSF-mode of 0 and an overall brain matter
mode of 1. We found that using the mode instead of mean provides a more
robust normalization since the mode is less affected by the size of the lesions.
We obtained the CSF-area by training a simple classifier using only the pure
voxel intensities.
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4 Similarity Classifier (SC)

The main idea of our work is to find similar images which are then used to train
a voxel classifier. Therefore, the similarity between two images is defined by the
ability to successfully use them to train a classifier. Accordingly, we define the
similarity ρ(I0, I1) of two image I0 and I1 as the Dice score that a voxel classifier
trained with I0 scores if the mask for I1 is predicted.

While it is possible to directly calculate the similarity of two images with
known voxel labels, it needs to be estimated for new images with unknown
voxel labels. We chose Neighbourhood approxing Forests (NAF) for this task [1].
NAF are trained to find the most similar images based on a high-dimensional
representation by training trees that group the training data in a way that
maximizes the similarity within each leaf node. For the prediction, the new
images are then passed below each tree and for every sample the number of
leaf nodes that had been reached and contains this sample type is returned. A
high number of samples therefore indicates a high similarity between a training
sample and the sample that is used to predict.

To train the NAF and use it as SC we first calculated the similarity of all
training images according to the previously given definition of ρ(·, ·). We then
built a feature vector for every patient based on the normalized T1, T2, DWI,
and FLAIR image by calculating the first order statistics for the whole brain (In-
tensity minimum, maximum, range, mean, variance, sum, median, std. deviation,
mean absolute deviation, root means square, uniformity, entropy, energy, kurto-
sis, skewness and the number of voxels). Although these are all image-derived
values, the proposed approach also allows the use of additional information like
patient age, diagnosis, etc., which are not included in the challenge data.

We trained the NAF with 100 trees, a minimum of two samples at each leaf,
30 random tests for best split at each node during the training and a maximum
tree depth of 12. After predicting a new patient (Online Training stage, see Fig.
1) we chose the three highest ranked training images to train the new VC.

5 Voxel Classifier (VC)

The estimation of voxel labels is done by a voxel-wise classification. For this task
extremely randomized trees (ExtraTrees)-based classifiers are used [2]. Previous
work showed that ExtraTrees usually perform slightly better than canonical
Random Forests [4] and were already successfully applied in lesion segmenta-
tion [6]. Voxel features were derived from the normalized MR-images. We used
the intensity and the differences between each of the modalities. Additionally,
the Gaussian, Difference of Gaussian, Laplacian of Gaussian (3 directions), and
Hessian of Gaussian were calculated with Gaussian sigma of 1 mm, 3 mm, and
5 mm, leading to 82 features per voxel.

Instead of training on the given full labels we created sparsely and unam-
biguous annotated regions (SURs) which allows the fast labeling of new training
data [3, 5]. The necessary labeling for the SISS 2015 challenge dataset was done
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in less than 21/2 hours. The sampling error introduced by SUR-based labeling
was corrected by using DALSA-learning [5].

For this, every training sample x is weighted with an correction weight w
which is selected to ensure that the probability for this sample in the training
data equals the probability P for this sample in the complete image, i.e.

w(x) =
PComplete Image(x)

PSURs(x)
(1)

We estimate the unknown w(x) by training a parameter-less logistic regres-
sion that differentiates between voxels that are labeled by SURs and voxels that
are within the brain mask. By using the probabilistic output of this method, w
can be estimated [5].

Each ExtraTrees classifier was trained with 50 trees and the Gini purity as
optimization measurement. The maximum tree depth was not limited. During
each training (during similarity calculation and final VC training) the best class
weights, and minimum samples at leaf nodes were independently estimated by
using cross validation.
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Abstract. This paper presents an automated segmentation framework
for ischemic stroke lesion segmentation in multi-spectral MRI images.
The framework is based on a random forests (RF), which is an ensemble
learning technique that generates several classifiers and combines their
results in order to make decisions. In RF, we employ several meaningful
features such as intensities, entropy, gradient etc. to classify the voxels in
multi-spectral MRI images. The segmentation framework is validated on
MICCAI 2015 ISLES challenge training data sets. The performance of
the framework is evaluated relative to the manual segmentation (ground
truth). The experimental results demonstrate the robustness of the seg-
mentation framework, and that it achieves reasonable segmentation accu-
racy for segmenting the sub-acute ischemic stroke lesion in multi-spectral
MRI images.

Keywords: Segmentation, automatic, MRI, ischemic stroke lesion, ran-
dom forests

1 Introduction

Multi-spectral magnetic resonance imaging (MRI) [1] can be used for detecting
the ischemic stroke lesion and can provide quantitative assessment of lesion area.
It can be established as an essential paraclinical tool for diagnosing stroke as well
as for monitoring the efficacy of experimental treatments.

For a quantitative analysis of stroke lesion in MRI images, expert manual
segmentation is still a common approach and has been employed to compute
the size, shape and volume of the stroke lesions. However, it is time-consuming,
tedious, and labor-intensive task. Moreover, manual segmentation is prone to
intra-and inter-observer variabilities [2].

Therefore, the development of fully automated and accurate stroke lesion
segmentation method has become an active research field. In literature [2–4],
several automated segmentation methods have been proposed for stroke lesion
segmentation over the years. However, the automated stroke lesion segmenta-
tion is still a challenging task because of the gradual changes of stroke lesion
appearance in multi-spectral MRI images.
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Herein, we present a fully automated framework for sub-acute ischemic stroke
lesion segmentation in multi-spectral MRI images. The framework is based on a
supervised classification method called random forests. The main contribution
in the framework is employing a set of meaningful features and the choice of
steps for pre-processing the MRI images and post-processing of segmented data.

2 Method

The schematic procedure of the segmentation framework is shown in Fig.1. The
framework takes the multi-spectral MRI brain images as input and it includes
two-step pre-processing: (1) Correction of bias field using the N3 bias field correc-
tion algorithm [5] and (2) normalization of intensity values of each MRI modality
to the interval [ 0 1], done by applying the linear histogram stretching. For each
voxel of multi-spectral MRI images, the following set of meaningful features is
extracted.
1. MRI scans intensities: These features comprise the intensity in the 4 MRI
scans ( T1, T2, DWI, and FLAIR) provided by the data sets and the difference
between each two scans. The total number of these features was 16.
2. MRI scans smooth intensities: A Gaussian filter with size 7 × 7 × 7 was em-
ployed to each MRI scan in order to extract the smooth intensities. The total
number of these features was 4.
3. MRI scans median intensities: A median filter with size 5× 5× 5 was applied
to each MRI scan to obtain the median intensities. The total number of these
features was 4.
4. The gradient and magnitude of the gradient: A gradient in the x, y and z
direction and their magnitude was computed in order to get the information
about the lines and edges in each MRI scan. The total number of these features
was 16.
5. Local entropy: The entropy for each voxel in the MRI scans was computed
using the neighborhoods size 9 × 9 × 9. The total number of these features was
4. !

Input: Multi-spectral MRI brain images 
(T1, T2, DWI, FLAIR) 

Features Extraction  
(Intensity, intensity difference, 

gradient in x-direction, etc.) 

Supervised method (Random 
forests) 

Training and classification 

Post-processing 
(Erosion and dilation) 

Pre-processing 
(Bias field correction and normalization) 

 

Segmented stroke lesion 
!

Fig. 1. Schematic procedure of the segmentation framework.

All features, mentioned above, were normalized to zero mean and unit de-
viation. These features are then employed to train the RF [6, 7] classifier and
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classifying the sub-acute ischemic stroke lesion. In RF the training is performed
using labeled data sets provided from the ground truths by building multiple de-
cision trees, wherein every node except the leaves is a decision node that contains
a feature and its corresponding threshold. Every leaf node contains a probabilis-
tic class distribution (histogram of class labels for the voxels that have reached
that node). Moreover, in RF the building of multiple decision trees is based on
a random selection of a subset of features (called bootstrap aggregating), which
makes RF robust to overfitting. The classification is done by traversing voxels
over the trees starting from the root of each tree to a leaf node. The voxels are
split at a given node based on the classification of the feature/threshold at that
node. The average probabilistic decision of the class distribution from all trees is
considered the final probabilistic class distribution (voxel label in this scenario).
The two important parameters that affect the efficiency of RF are a number of
trees and depth of each tree. In our work, we set the RF parameters: number
of trees =150 and depth of each tree=50. For training, a total of 999,000 data
samples (37,000 samples per training data) were used to train the RF classifier.
These samples were obtained by down sampling the majority class (non ischemic
stroke) data in each training data set in order to make their frequencies closer
to the minority class (ischemic stroke) data. The sampling was done randomly.
Finally, the post-processing is performed using the dilation followed by an ero-
sion operation by employing the 2D 5 × 5 square structuring elements in order
to remove the small objects classified as stroke lesion.

3 Results

The evaluation is performed on MICCAI 2015 ISLES challenge training data
sets using leave-one-out cross validation. The data sets comprise 28 sub-acute
ischemic stroke lesion cases. The evaluation is done using the online evaluation
system provided by the challenge organizers. Table 1 presents the average quan-
titative results of our segmentation framework in terms of average symmetric
surface distance (ASSD), Dice, Hausdorff distance, precision and recall respec-
tively. An example of the segmentation result for sub-acute ischemic stroke lesion
for the training data set “01” is shown in Fig.2.

4 Conclusions

In this paper, we present an automated framework based on the RF classifier
for segmenting the sub-acute ischemic stroke lesion using multi-spectral MRI
images. We employ a set of meaningful features to train the RF and classify
the ischemic stroke lesion. The experimental results show the efficacy of the
segmentation framework and that it can segment the sub-acute ischemic stroke
lesion with reasonable accuracy. For future work, we will explore more set of
features in order to improve the accuracy of our segmentation framework. The
total execution time of our segmentation framework is about 25 to 30 minutes
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for segmenting the stroke lesion for each training data set using the MATLAB
on a MacBook Pro with an Intel processor (i5, 2.5 GHz) and 4 GB RAM.

Table 1. Average quantitative results of the segmentation framework in terms of
ASSD, Dice, Hausdorff distance, precision and recall.

ASSD (mm) Dice Hausdorff Distance (mm) Precision Recall

10.30 ± 11.11 0.54 ± 0.26 82.78 ± 23.95 0.67 ± 0.33 0.50 ± 0.25

!

!(a)                     (b)                         (c)                         (d)                      (e)                         (f)                          

Fig. 2. Example of segmentation result for axial slice number 88 for the training data
“01”: (a) DWI (b) Flair (c) T1 (d) T2 (e) ground truth and (f) automatic segmentation.
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Abstract. We present a novel fully-automated generative ischemic stroke
lesion segmentation method that can be applied to individual patient im-
ages without need for a training data set. An Expectation Maximization-
approach is used for estimating intensity models for both normal and
pathological tissue. The segmentation is represented by a level-set that
is iteratively updated to label voxels as either normal or pathological,
based on which intensity model explains the voxels’ intensity the best. A
convex level-set formulation is adopted, that eliminates the need for man-
ual initialization of the the level-set. The performance of the method for
segmenting the ischemic stroke is summarized by an average Dice score
of 0.78 and 0.51 for the SPES and SISS 2015 training set respectively.

1 Introduction

The MICCAI Ischemic Stroke Lesion Segmentation (ISLES) challenge comprises
the automatic segmentation of ischemic stroke lesions acquired in the sub-acute
stroke development stage (SISS) and automatic segmentation of acute ischemic
stroke lesions for stroke outcome prediction (SPES).

Discriminative segmentation methods require a set of manually annotated
training images from which the appearance of the brain structures of interest
is implicitly learned by the algorithm. Generative models on the other hand
do not require a set of annotated training images. Explicit prior knowledge of
anatomy or intensity appearance is directly incorporated into the algorithm [1].
In clinical practice the availability of annotated training data may be limited
or non-existent, such that a generative method that does not rely on training
data may be preferred. We present a novel fully-automated generative ischemic
stroke segmentation method that only makes use of a probabilistic atlas of white
matter (WM), grey matter (GM) and cerebrospinal fluid (CSF) and for which no
manual initialization is needed. The probabilistic prior guides the global search
for voxel outliers that cannot be explained by the normal tissue model. The lesion
boundary is represented as a level-set that spatially regularizes the segmentation.

2 Method

Classification is based on an Expectation Maximization (EM)-estimation of nor-
mal and pathological intensity models. An evolving level-set determines which
of both intensity models applies to what regions in the image (Fig. 1).
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WM GM CSF

Expectation-Maximization

Normal model Lesion model

Level-set update

(a)

(b)

Fig. 1. (a) Spatial priors are non-rigidly registered to the patient image. (b) A full
EM-estimation of the normal and pathological intensity models is done, after which a
level-set is updated. This process is repeated until convergence.

Prior Registration Spatial priors of WM, GM and CSF are non-rigidly registered
to the patient image. Although registration of a healthy atlas to a patient image
is still an active field of research, this problem is ignored for now and standard
non-rigid registration methods are used. The prior information is relaxed by
smoothing the spatial priors with a Gaussian kernel.

Intensity models and the Expectation-Maximization algorithm Normal and patho-
logical tissue intensities are modeled separately. Let GΣj

be a zero-mean multi-
variate Gaussian with covariance matrix Σj, then normal and pathological tissue
are both modeled by a Gaussian mixture model

p(yi|θ) =
K∑

j

GΣj
(yi − µj)p(Γi = j), (1)

with yi = (yi1 , . . . , yiN ) the intensity of voxel i and Γi = {j|j = 1 . . .K} the
tissue class. The intensity model parameters θ = {(µj,Σj)|j ∈ 1 . . .K} are it-
eratively updated using an EM-approach [1]. For normal tissue, K = 3 and
p(Γ = j) = πj are the spatial priors for WM, GM and CSF.

Convex level-set formulation The image I is subdivided into regions labeled
Ωin (pathological tissue) and Ωout (normal tissue) for which the intensities are
modeled by the probability distributions described in the previous paragraph
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[2]. The regions are separated by a boundary ∂Ω that is implicitly represented
by a level-set function. The boundary and intensity model parameters are found
by minimizing the energy functional

argmin
θin,θout,∂Ω

λ1

∫

Ωin

−log pin(I|Ωin, θin) dx+λ2

∫

Ωout

−log pout(I|Ωout, θout) dx+κL(∂Ω),

(2)
where L(.) is the length. The first two terms penalize the negative loglikelihood
of the image I evaluated in respectively the pathological and normal region.
The third term penalizes the length of the boundary. Parameters λ1, λ2 and
κ determine the relative importance of the energy terms. For each iteration to
update the level-set, a full EM-estimation of the parameters θin and θout is done.

The energy functional is non-convex and the gradient flow finds a solution
that depends on a manual initialization of the level-set. This initialization typi-
cally has significant impact on the segmentation result. In this work, this problem
is overcome by using a convex level-set formulation that performs a global search
over the image and makes a manual initialization superfluous. A global minimum
is guaranteed by replacing the gradient flow by another gradient flow with the
same steady-state solution and by restricting the level-set to lie in a finite inter-
val [3]. The problem is thus reformulated as an L1-minimization problem that is
solved by the Split Bregman-numerical scheme [3]. It is important to note that,
by using spatial priors of WM, GM and CSF, the global optimum coincides with
the clinically meaningful notion of normal and pathological regions.

3 Experiments and Results

The SPES and SISS training data are already skull-stripped and registered intra-
patient. No further pre-processing is done. Prior registration is based on the
T1-weighted MNI-Colin27 atlas (2008) that is registered to the patient volume
with a cross-correlation similarity measure (radius 4 voxels) by the Advanced
Normalization Tools (ANTs) toolbox [4]. The spatial priors are relaxed by a
Gaussian kernel with σ = 3 voxels. For segmentation of the SPES data, we
use the T2-weighted and TTP-weighted MR images and for SISS the diffusion
weighted and FLAIR-weighted MR images. For SPES, the modalities are used
in a completely multivariate way, i.e. with bivariate Gaussian models. For SISS,
the modalities are segmented separately and a voxel is only labeled as lesion if it
is a lesion in both modalities. The number of Gaussians for modeling the lesion
intensities is set to 1. The energy functional hyperparameters are λ1 = λ2 = 1e1
and κ = 1e1. Performance of the algorithm for both SPES and SISS is evaluated
by means of the ASSD, Dice overlap coefficient, Hausdorff distance and precision
and recall (Table 1). The median Dice scores for the SPES and SISS training
sets are 0.79 and 0.60 respectively (Fig. 2).
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Table 1. Performance of the presented method on the SPES and SISS training set

ASSD Dice Hausdorff Precision Recall
avg std avg std avg std avg std avg std

SPES 3.51 2.13 0.78 0.08 46.31 25.17 0.78 0.11 0.80 0.12
SISS 14.43 25.88 0.53 0.26 69.67 30.77 0.62 0.31 0.56 0.29

Fig. 2. Left: Boxplots for the SPES and SISS Dice scores. Right: T2- and TTP-
weighted MR example image from SPES and FlAIR- and diffusion weighted MR ex-
ample image from SISS with ground truth segmentations (red) and the resulting seg-
mentations (green) for a typical segmentation (Dice score 0.79 and 0.50 for SPES and
SISS).

4 Discussion and Conclusion

In plenty of clinical settings only a handful of patient images needs to be pro-
cessed without the availability of an annotated training set. Generative methods
have therefore an enormous practical value. We have presented a generative
method for segmenting the ischemic stroke lesion in the SPES and SISS training
set. The method is abundantly flexible to detect any intensity abnormality, and
therefore also suitable to detect other lesions like tumor or MS.
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Abstract. Deep Neural Networks (DNNs) are often successful at solv-
ing problems for which useful high-level features are not obvious to de-
sign. This document presents how DNNs can be used for automatically
segment brain lesions for the MICCAI Ischemic Stroke Lesion Segmen-
tation (ISLES) challenge. We experimented several DNN architectures
leveraging the recent advances in the field such as convolutional layers,
max pooling, maxout units, dropout regularization, and various training
strategies.
We present the results of our best performing network on the SISS and
SPES training datasets. The results are obtained from the evaluation
tool available on the Virtual Skeleton database. As of today, empirical
results show that our approach is the most accurate one.

1 Introduction

Brain lesions are abnormalities in the tissue of an organism, usually caused by
disease or trauma. The delineation and quantification of brain lesions is criti-
cal to establishing patient prognosis, and for understanding the development of
pathology over time. Typically, this is performed manually by a medical expert
through investigation of several Magnetic Resonance Imaging (MRI) modali-
ties. To alleviate the tedious, time consuming manual delineation, computerised
methods can be very useful.

Recently, Convolutional Neural Networks (CNNs) have proven particularly
successful in many computer vision applications. For instance, the so-called
AlexNet architecture [7] was the first to establish CNNs as the de facto state-of-
the-art methodology for object recognition in natural images. The main appeal of
convolutional networks comes with their end-to-end training nature [6]. That is,
their ability of learning low, medium, and high-level features (which involve lin-
ear and non-linear operators) as well as the classification function. The potential
of CNNs for segmentation in medical imaging however is not well understood,
and has only been the subject of preliminary investigations (see workshop publi-
cations [3, 10, 9]). In other work [5], alternative to the standard CNN framework
have also been explored for more general image segmentation tasks, with the
argument that CNN training is overly computationally intensive.
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Conv 3x3 +
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Fig. 1: Our CNN model. The input patch goes through two convolutional net-
works each comprising of a local and a global path. The feature maps in the
local and global paths are shown in yellow and orange respectively.

In this document, we propose a successful, efficient, and automatic CNN
architecture for brain lesion segmentation. Note that the proposed CNN is similar
to the one used by our team on the 2015 MICCAI brain tumor segmentation
(BRATS) challenge. We report results on SPES and SISS training datasets and
confirm that our method is leading on both datasets.

2 Convolutional Neural Network Architecture

We approach the problem of brain lesion segmentation by solving it slice by
slice, from the axial view. Let X be one such 2D image (slice), where each pixel
is associated with multiple channels, one for each image modality. We treat the
problem of segmentation as one of taking any patch it contains and predicting
the label of the pixel at its center. The problem is thus converted into an image
classification problem.

In the context of this work, we tested a large number of CNN architectures
and the most effective one is shown in Figure 1. As can be seen, our method
uses a two-pathway architecture in which each pathway is responsible for learning
about either the local details or the larger context of tissue appearances (e.g.
whether or not it is close to salient regions of the brain like the skull or the CSF).
The pathways are joined by concatenating their feature maps immediately before
the output layer.

Finally, a prediction of the class label is made by stacking a final output
layer, which is fully convolutional to the last convolutional hidden layer. The
number of feature maps in the last layer matches the number of class labels and
prediction is made with the softmax non-linearity.

2.1 Efficient Two-Phase, Patch-Wise Training

By interpreting the output of our CNN as a model for the distribution over
segmentation labels, a natural training criteria is to maximize the probability
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Fig. 2: SISS MRI modalities. The images show the MRI modalities used as input
channels to the CNN model for SISS dataset.

CBF DWI Tmax TTP

OTCBVT1CT2

Fig. 3: SPES MRI modalities. The images show the MRI modalities used as input
channels to the CNN model for SPES dataset.

of all labels in our training set or, equivalently, to minimize the negative log-
probability − log p(Y|X) =

∑
ij − log p(Yij |X) for each labeled brain. To do this,

we follow a stochastic gradient descent approach by repeatedly selecting labels
Yij at a random subset of positions (i.e. patches) within each brain, comput-
ing the average negative log-probabilities for this mini-batch of positions and
performing a gradient descent step on the CNNs parameters.

Care must be taken however to ensure efficient training. Indeed, since the
distribution of labels is very imbalanced (e.g. more than 98% of the brain is
healthy), selecting patches from the true distribution would cause the model to
be overwhelmed by healthy patches. It is well known that neural network training
algorithms such as stochastic gradient descent perform poorly in cases of strong
class imbalances. To avoid these issues, we initially construct our patches dataset
such that all labels are equiprobable. This is what we call the first training phase.
Then, in a second phase, we account for the unbalanced nature of the data and
re-train only the output layer (i.e. keeping the kernels of all other layers fixed)
with a more representative distribution over the labels. Using this approach, we
were able to fully train CNNs in less than 6 hours.

3 Implementation details

Our implementation is based on the Pylearn2 which supports GPU’s and can
greatly accelerate the execution of deep learning algorithms [4].
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To test the ability of CNNs to learn useful features from scratch, we employed
only minimal preprocessing. We applied N4ITK bias correction [2] and clamp
the 1% highest intensities to the maximum grayscale value of the 99% remaining
pixels as done in [8]. These choices were found to work best in our experiments.
The data was normalized within each input channel by subtracting the channel
mean and dividing by its standard deviation.

The hyper-parameters of the model (kernel and pooling size for each layer)
are illustrated in Figure 1. The learning rate α is decreased by a factor γ = 10−1

at every epoch. The initial learning rate was set to α = 0.1. A post processing
method based on connected components was also implemented to remove flat
blobs which might appear in the predictions due to bright corners of the brains
close to the skull.

4 Experiments and Results

We conducted our experiments on the SISS and SPES datasets. The SISS dataset
contains 28 brains with four modalities namely: T1, Flair, Diffusion Weighted
Image (DWI) and T1. SPES dataset contains 30 brains with 7 modalities namely:
CBF, CBV, DWI, T1c, T2, Tmax and TTP. Both datasets provide pixel-accurate
level ground truth of the abnormal areas. Although the ground truth for SPES
dataset contains three classes (healthy, stroke, and edema), according to the
challenge website the evaluation is done by merging the two unhealthy classes.
Figure 3 and Figure 2 show examples from the SPES and SISS datasets.

The virtualskeleton webpage provides a quantitative evaluation of the model
[1]. It reports the dice, precision and recall coefficient, as well as the average
symmetric surface distance (ASSD) and the Hausdorff distance (HD).

Table 1 and Table 2 show the results obtained from the virtualskeleton web-
page on both SISS and SPES datasets and how we compare with other methods
applied on these datasets. As one can see, our method (dutif1) is well in front
the other methods. Our approach provides the best score on 4 of the 5 metrics on
the SISS dataset, and on 3 of the 5 metrics on the SPES dataset. Also, each time
our method is not rank first, it is ranked second. Let us underline the fact that
since the Hausdorff distances of our method (31.75 and 23.28) is significantly
lower than the ones obtained by the other methods, we may conclude that our
approach is less prone at detection outliers in the brain.

Figure 4 shows visual segmentation maps produced by our model on both
datasets. The first two rows show segmentation results on SPES dataset and the
two bottom rows show segmentation results on SISS dataset. It takes on average
25 seconds to produce a segmentation result. The larger receptive field in the
two-pathway method allows the model to have more contextual information of
the lesion. At the same time, the smaller receptive field make model flexible
enough to recognize the fine details of the lesion as opposed to making very
smooth segmentation as in the one path method. By allowing for a second phase
training and learning from the true class distribution, the model corrects most
of the misclassifications produced in the first phase.
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Fig. 4: Results obtained by our model on SPES (top row) and SISS (bottom row)
datasets.

Method ASSD Dice Hausdorff Distance Precision Recall
average std average std average std average std average std

dutif1 8.92 19.23 0.69 0.30 31.75 28.52 0.72 0.31 0.67 0.31
halmh1 6.77 13.17 0.63 0.23 36.16 36.46 0.68 0.24 0.64 0.26
jessa1 11.59 18.34 0.45 0.24 39.23 30.70 0.52 0.26 0.51 0.31

mahmq2 10.30 11.11 0.54 0.26 82.78 23.95 0.67 0.33 0.50 0.25
maieo1 12.36 12.30 0.36 0.25 56.94 40.98 0.65 0.41 0.35 0.21
muscj1 56.77 79.90 0.48 0.38 76.88 81.77 0.57 0.43 0.44 0.37
pinta1 12.18 22.59 0.50 0.31 43.21 30.50 0.61 0.34 0.55 0.33
robbd1 9.36 13.85 0.57 0.28 53.88 34.58 0.58 0.33 0.68 0.21

Table 1: Results on the SISS training dataset showing how our method compares
with other methods.
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Method ASSD Dice Hausdorff Distance Precision Recall
average std average std average std average std average std

dutif1 1.76 0.94 0.85 0.08 23.28 14.13 0.83 0.11 0.88 0.08
haect1 3.51 2.13 0.78 0.08 46.31 25.17 0.78 0.11 0.80 0.12
mckir1 1.42 1.01 0.85 0.06 30.71 18.91 0.84 0.10 0.87 0.07
robbd1 2.03 1.35 0.82 0.07 44.29 27.59 0.81 0.14 0.85 0.07

Table 2: Results on the SPES training dataset showing how our method compares
with other methods.

5 Conclusion

In this document, we proposed a brain lesion segmentation method based on
deep convolutional neural networks. Results on the SISS and SPES datasets
reveal that our method is clearly the most accurate one. The high performance
is achieved with the help of a novel two-pathway architecture which can model
both the local details and global context. Note that the proposed CNN is close
to the one used by our team on the 2015 MICCAI brain tumor segmentation
(BRATS) challenge. Since there also our approach produced the most accurate
results, we are inclined to believe that CNN is a promising technology for brain
segmentation applications.

References

1. Virtual skeleton database. http://www.virtualskeleton.ch/
2. Avants, B.B., et al.: Advanced normalization tools (ants). Insight J (2009)
3. Davy, A., et al.: Brain tumor segmentation with deep neural networks. proc of

BRATS-MICCAI (2014)
4. Goodfellow, I., et al.: Pylearn2: a machine learning research library. arXiv preprint

arXiv:1308.4214 (2013)
5. Huang, G.B., Jain, V.: Deep and wide multiscale recursive networks for robust

image labeling. ICLR, arXiv:1310.0354 (2014)
6. Jaderberg, M., Vedaldi, A., Zisserman, A.: Speeding up convolutional neural net-

works with low rank expansions. In: in proc of BMVC (2014)
7. Krizhevsky, A., et al.: ImageNet classification with deep convolutional neural net-

works. In: NIPS (2012)
8. Menze, B., et al: The multimodal brain tumor image segmentation benchmark

(brats). Medical Imaging (2014)
9. Urban, G., et al.: Multi-modal brain tumor segmentation using deep convolutional

neural networks. proc of BRATS-MICCAI (2014)
10. Zikic, D., et al.: Segmentation of brain tumor tissues with convolutional neural

networks. proc of BRATS-MICCAI (2014)

56



Hierarchical Segmentation of Normal and
Lesional Structures Combining an Ensemble of

Probabilistic Local Classifiers and Regional
Random Forest Classification

Andrew Jesson and Tal Arbel

Centre for Intelligent Machines, McGill University

1 Overview

We present a hierarchical framework for the simultaneous segmentation of nor-
mal and pathological structures in brain MRI. The framework starts with the
ensemble decision made by a number of probabilistic local classifiers distributed
thoughout a fixed reference space (EPLC). The EPLC provides consistent smooth
segmentations for both normal and pathological structures which are then grouped
into regions and passed on to a high-level regional random forest classifier (RRF).

2 Implementation

The class of a given voxel in medical image segmentation problems depends on
its location within the image reference space, its intensity value, neighborhood
context in both the intensity and class label domain, and regional context be-
tween continuously labeled structures. Here we model location by an esemble
of local classifiers populated throughout a common reference space. Each lo-
cal classifier models the class posterior probability of the class given voxel and
neighbourhood context in the intensity domain by taking a filtered patch of the
image as input. Neighbourhood context in the label domain is modeled by a
global Markov Random Field (MRF). Finally, regional context is captured by a
random forest classifier.

2.1 Ensemble of Probabilistic Local Classifiers

Reference space. The EPLC requires a common reference space and so we
use the reference space defined by the MNI Linear ICBM Average Brain Stereo-
taxic Registration Model [2,3]. Each subject is normalized into this space us-
ing the rigid transform determined by the antsRegistration tool [4] with sub-
ject/template T1 image pair as input. The spatial centres of each local classifier
are distributed throughout this space in a hexagonal close-packed lattice and are
given by
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where i, j, k are the voxel indices and r is chosen to be 8.5mm.

Local classifiers. In total there are N = 554 local classifiers as we retain only
those with spatial centres that overlap with the reference space model’s brain
mask. Each local classifier has a radially decaying spatial responsibility in the
reference space given by
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where c is a constant controlling the decay of the spatial responsibility chosen
here to be 0.693 and Z is a normalization constant defined by the sum of all
spatial responsibilities at x.

Each classifier builds distributions for K = 11 classes in total, namely back-
ground, cerebrospinal fluid, lateral ventricles, other ventricles, deep gray matter,
cortical gray matter, cerebellar gray matter, cerebral white matter, cerebellar
white matter, brain stem, and lesion. Given that ground truth is only available
for lesion, we generate a set of atlases from the training data using the Multi-
Atlas Label Fusion approach that was developed in previous work in the context
of MS lesion segmentation to get training samples for normal structures [1].

To model neighbourhood context in the intensity domain each classifier takes
a 15x7x3x3 patch centred around a given voxel as input. The first three dimen-
sions of the patch are spatial and the fourth dimension is comprised of the T1,
FLAIR, and DWI contrasts. To spatially decorrelate the input patch and reduce
dimensionality we filter the patch with principal component analysis (PCA) de-
termined kernels. Mixtures of gaussians (GMM) then model the distribution of
each class given the filtered input.

For each test subject, 5000 samples are drawn randomly, with replacement,
and weighted by wn(x). The patches are reshaped to 1x945 observation vectors
d(x) to form a 5000x945 observation matrix D and each column of D is stan-
dardized. GMM inputs are given by d̂n(x) = d(x)Un, where Un is a 945xp matrix
of principal components determined during training. Un is unique for each local
classifier and p is determined by taking the principal components with largest
explained variance such that the total retained variance is ⇠ 90% of the total
variance from the training set.

The probability density functions pn(d̂n(x) | Ck) are estimated during train-
ing using a GMM for each class Ck and the number of components for each
model are determined iteratively using Bayesian information criterion (BIC).
The class prior probabilities pn(Ck) are estimated as the relative frequency of
class Ck sampled by the local classifier during training. The posterior probability
of observing class Ck given d̂n(x) by the nth classifier is given by
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Fig. 1. Example segmentations after ensemble decision. Each square contains an axial
slice from a given subject: T1, top left; Segmentation, top right; DWI, bottom left;
Ground truth lesion, bottom right. Lesion, red; CSF, green; deep gray matter, yellow;
cortical gray matter, cyan; cerebellar gray matter, purple; cerebral white matter, white;
cerebellar white matter, blue; brain stem, beige. Results are based on 7-fold cross
validation on the training data.
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The ensemble confidence for a given class at voxel x is then given by

f(wn(x), d̂n(x), Ck) =
X

n=1...N

wn(x)pn

⇣
Ck | d̂n(x)

⌘
. (4)

Global MAP-MRF. Given that samples for each local classifier are drawn
randomly with replacement there is no guarantee that all voxels will be visited
by the EPLC. We use a MRF solution to yield a smooth labelling. The prior
energy is given by a Potts model with � = 0.1 and the observation energy
is given by � log(f(wn(x), d̂n(x), Ck)). The optimal labelling solution is found
using ICM. Figure 1 shows example segmentations from several subjects.

Utilizing probabilistic outliers. As can be seen in figure 1 the healthy tissue
segmentations are qualitatively consistent and acceptable; however, lesions ap-
pear consistently under segmented. Fortunately, by using a probabilistic model
for each local classifier we can obtain a quantitative outlier measure using the
Mahalanobis distance (computing CDF for each high dimension GMM is pro-
hibitively time consuming). An outlier mask is generated for each subject by
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thresholding the Mahalanobis distance corresponding to the maximum posterior
class value by 2 standard deviations above the global mean measure. This mask
is then added to the proposed lesion segmentation.

2.2 Regional Random Forest Classifier

Lesion segmentations are finally refined using a random forest classifier. Candi-
date lesions are defined by morphological 18-connected regions. Features for the
random forest are the distance minimum, maximum, mean and variance from
each normal tissue label excluding background; the volume, and solidity of the
candidate lesion; the convex hull inertial tensor and principal moments of the
candidate lesion; and 32 bin histograms from normalized T1, FLAIR, and DWI
contrasts over the candidate lesion. In total there are 146 features and each candi-
date split in the forest randomly chooses 12 of these features. We use MATLAB’s
’treebagger’ class to implement the random forest. Candidate lesions for which
the confidence of the random forest is greater than around 40% are retained for
the final classification. Figure 2 shows the e↵ect of the high level refinement on
the lesion segmentations provided by the ensemble of local classifiers.

Fig. 2. Example lesions segmentations. From top to bottom: EPLC output, context
based classifier output, ground truth segmentation. From left to right: di↵erent subjects
in training dataset. Below rows 1 and 2 are the computed challenge metrics for the
subject. Results are based on 7-fold cross validation on the training data.
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Prediction of Ischemic Lesions using Local
Image Properties and Random Forests

John Muschelli

Johns Hopkins Bloomberg School of Public Health

1 Methods

1.1 Registration with Symmetric Normalization

Although the images were registered to the FLAIR sequence, some local differ-
ences between spatial locations were observed. We therefore re-registered each
sequence to the FLAIR image using Symmetric Normalization (SyN) included
in the ANTs software.

1.2 Inhomogeneity Correction

Although, there may be non-uniform image intensities spatially in the brain, we
did not perform inhomogeneity correction, for example, the N4 bias correction
available within ANTs. We believer that as some lesions may be very large, using
inhomogeneity corrections may induce lesion areas to be similar to non-lesion
areas. We use estimated smoothed images in the prediction, which should help
correct for some inhomogeneity.

1.3 Intensity Normalization

As MRI are acquired in arbitrary units, we performed an intensity-based nor-
malization. Let xs,v represent the intensity of image sequence s for voxel v. Let
Zs,v represent the intensity-normalized data. We subtract an estimated mean
(µs) and standard deviation (σs) for each sequence and normalize the data as
follows:

Zs,v =
xs,v − µs

σs

Estimation of the mean and standard deviation The mean and standard
deviation are actually estimated from the trimmed distribution of the data of all
voxels within the brain mask. The trimming procedure takes all voxels within
the brain mask, removes the upper and lower 20% of the data, and estimates the
mean and standard deviation from these intensities. This standardizes voxels to
the number of (trimmed) standard deviations above the trimmed mean. The goal
of the trimming is to delete high-intensity voxels from the lesion or low-intensity
voxels from edema.
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1.4 Imaging Predictors

We derived a set of imaging predictors from each scan. We will describe each
here with their rationale for use. These features make up the potential set of
predictors for image segmentation. Each operation uses the normalized images.

Normalized intensity information The normalized voxel intensity value in
z-units was included, as it is the main predictor used in visual inspection; high
values are indicative of lesion.

1.5 Flipped Difference Image

As most lesions are only on one side of the brain, we calculated the difference
in intensity between a voxel and the voxel on its contralateral side. We obtained
this image by first rigidly registering the image to the MNI template to account
for any head tilt, then flip the image over the left-right axis, and then take the
difference of the flipped image and the original image.

Local Moment Information For each voxel, we extracted a neighborhood,
denoted Nv, of all adjacent neighboring voxels in 3 dimensions and the voxel
itself. Let Is,v(k) denote the normalized voxel intensity in for voxel neighbor k,
where k = 1, . . . , 27. We created the voxel neighborhood mean intensity (x̄s,v):

x̄s,v =
1

Nv

∑

k∈Nv

xs,v (1)

We calculated the voxel neighborhood standard deviation (SD), skew, and kur-
tosis using the following method of moments estimators:

SDs,v =

√√√√ 1

Nv

∑

k∈N(v)

(xk(v)− x̄(v))
2

Skew(v) =

1
Nv

∑
k∈Nv

(xk(v)− x̄(v))3

[
1
Nv

∑
k∈Nv

(xk(v)− x̄(v))2

]3/2

Kurtosis(v) =

1
Nv

∑
k∈Nv

(xk(v)− x̄(v))4

(
1
Nv

∑
k∈Nv

(xk(v)− x̄(v))
2

)2

We acknowledge that we did not divide by Nv − 1 for standard deviation and
skewness, nor did we subtract by 3 for kurtosis. As Nv should be the same per
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voxel, this should not affect the estimates for prediction and will be accounted for
in any generalized linear model in the estimated coefficient. We also estimated
the local gradient of the normalized intensity for each voxel neighborhood ∇v,s:

∇v,s =
√
∇2

v,s,x +∇2
v,s,y +∇2

v,s,z

Voxels higher in their local mean correspond to voxels adjacent to higher
HU voxels on average, which are are more likely to be lesion. The higher order
moments can provide information about how homogeneous the intensities in the
neighborhood are and where edges occur.

Global Head Information We created 3 images which were obtained by
smoothing the original image using large Gaussian kernels (σ = 5mm3, 10mm3, 20mm3),
which can capture any potential homogeneity throughout the scan.

1.6 Model

To train an algorithm, we used 9 images and downsampled 300, 000 voxels. We
then used a random forest on these to predict lesion, using 500 trees. From
the random forest, we obtained the probability of lesion and determined the
threshold for these probabilities using the out-of-sample voxels from the training
images, optimizing for the Dice Similarity Index (DSI). We then predicted lesions
on the test dataset of 19 scans.

2 Discussion

We believe that our our method allows for a robust procedure for segmentation
of large ischemic lesions. This is due to intensity normalization and the set
of features that can differentiate lesion areas from healthy tissue. Using local
properties, we can leverage spatial information of the image. As such, we can use
methods that can use the voxel information without having a more complicated
multi-variate framework. The random forest allows for a flexible framework for
prediction, especially as some features are highly correlated.
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Segmenting the ischemic penumbra: a spatial
Random Forest approach with automatic

threshold finding

Richard McKinley1, Levin Häni1, Roland Wiest1, Mauricio Reyes2

1 Department of Diagnostic and Interventional Neuroradiology, Inselspital, Bern
University Hospital, Switzerland

2 Institute for Surgical Technology and Biomechanics, University of Bern, Switzerland

Abstract. We propose a fully automatic method for segmenting the
ischemic penumbra, using image texture and spatial features and a modi-
fied Random Forest algorithm, which we call Segmentation Forests, which
has been designed to adapt the original Random Forests algorithm of
Breiman to the segmentation of medical images. The method is fast,
taking approximately six minutes to segment a new case, and has yields
convincing results (An out-of-sample average Dice coefficient of 0.85, with
a standard deviation of 0.06).

1 Introduction

In patients presenting with acute stroke, it is important to be able to quickly
identify hypoperfused tissue-at-risk, in order to assess the suitability of intra-
arterial therapy. Thresholding maps derived from perfusion-weighted imaging
provides a usable but crude assessment of this volume of tissue: the technique
is prone to artifacts in the processing of the perfusion maps, leading to, for
example, identification of tissue as at-risk on the contralateral side of the brain.
Fast, automatic methods for identifying the tissue at risk which improve on
thresholding are therefore needed.
In this paper we introduce such a method, based on a modification of the standard
Random Forest approach [1].
Random Forests are a popular machine learning algorithm in medical imaging
applications, but standard implementations of the algorithm are not optimal
for medical imaging data, which is a) highly correlated at the patient level,
and b) unbalanced, with the target class often having a prevalence of 1% or
less. Segmentation forests avoid these problems by bootstrapping training data
first at the patient level, and the second by using out-of-sample patients to
empirically discover a threshold at which the Dice coefficient of the segmentation
is maximized, avoiding the need for holding out training data to tune the classifier.
Preliminary results of applying this technique to the ISLES acute stroke dataset
are reported.
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2 Method

Our segmentation algorithm uses pre-processing and texture and spatial features
inspired by the features used in the BraTumIA brain tumour segmentation tool
[2] and a previous pilot study on stroke segmentation [3]

2.1 Standardization and feature processing

Prior to model construction, features were extracted from the multimodal imaging
volumes using the Insight Segmentation and Registration Toolikt, available from
itk.org.

Before feature extraction, the structural image modalities (T2 and T1 contrast)
are smoothed (using the GradientAnisotropicDiffusionImageFilter from ITK
version 7.4.2) and a window filter is applied to the TMax map (with minimum
value 0 and maximum value 100) to suppress abnormally high values. All feature
maps were then rescaled with ITK version 7.4.2 to lie within the range [0,256].The
T1c image is coregistered to an atlas to allow extraction of atlas coordinates and
the location of the mid-sagittal plane.

We then extract, for each voxel of the volume, and each image modality, a feature
vector, consisting of the following features: - local texture features, extracted
over both 3-by-3-by-3 and 5-by-5-by-5 voxel volumes - mean intensity - intensity
variance, skewness and kurtosis - signal to noise ratio, entropy and energy -
local intensity percentiles - local image gradient features (gradient magnitude
computed using GradientMagnitudeRecursiveGaussianImageFilter from ITK
version 7.4.2, with a sigma of 1.0) - point intensity of the gradient magnitude
- mean of the gradient magnitude over 3-by-3-by-3 and 5-by-5-by-5 volumes -
variance of the gradient magnitude over 3-by-3-by-3 and 5-by-5-by-5 volumes -
a symmetry feature computed using a corresponding point on the contralateral
side of the brain (found using the previously computed atlas coordinates): the
difference between the voxel intensity and a smoothed intensity (computed using
a SmoothGaussFilterType from ITK version 7.4.2) from the contralateral side.

Additional features were the unscaled image modalities, atlas coordinates, and
an indication of whether the voxel is on the ispi- or contralesional (inferred by
comparing the means of the scaled TMax on each side of the brain.)

2.2 The Segmentation Forest classifier

Random forests have been successfully used in numerous medical imaging appli-
cations, either alone or together with a conditional random field regularization.
Random Forests is an example of bagging, in which a number of weak classifica-
tion algorithms are trained, each on a random sample of the training data: their
outputs are then averaged, yielding a better classification than each individual
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classifier. In the case of Random Forests, the weak classifiers are decision trees.
Each tree is built on a different bootstrap sample of the training data, and at
each stage of building the tree only a subset of the features are available for
classification: this prevents the trees from being too closely correlated, which
would spoil the benefits of ensembling the weak learners.

Bagging is less helpful when, as is the case in medical imaging, training data
is stratified into correlated clusters: the training examples extracted from a
single patient’s imaging data are closely correlated to one another, meaning
that bagging fails to decorrelate the weak learners. In addition, the validity of
out-of-bag measures of performance is diminished (since the out-of-bag samples
are closely correlated to the training data, the performance on those samples will
in general be much higher than on new data). To mitigate this, we introduce
a classifier we call Segmentation Forests. The algorithm works by training a
number of small Random forest classifiers (for example, with 50 trees), each one
trained on the data given by a bootstrap sample of the training cases. The final
classifier is then formed by averaging the output of each individual random forest,
meaning that the final classifier is, in the end, still an ensemble of trees, as with
an ordinary random forest.

Given a new case, the output of this classifier is then a score, between 0 and 1,
for each voxel. To generate a segmentation from this map, we set a threshold on
this map. Rather than choosing a threshold of 0.5, or calculating a theoretically
correct threshold based on the relative incidence of the background and lesion
classes, we instead derive an empirical threshold during training. We apply each
small forest built on a bootstrap sample of the training cases to the patient cases
not selected by the bootstrap sample. We calculate an estimate of the threshold
which optimizes the Dice coefficient over these out-of-bag cases, and the average
of these estimates is then used as the threshold for the final classifier.

3 Preliminary Results and Discussion

The segmentation forest classifier was implemented using the SpeedRF Random
Forest implementation of the H2O machine learning package (Version 2.8.4.4),
and the accompanying R package, both acquired from on CRAN or via h2o.ai.
This implementation of Random Forests is faster and more memory-efficient than
the standard R implementation, allowing for the use of all data in the training
sets, without downsampling of the background class.

The initial results were generated using a segmentation forest setup, with ten
bootstrap samples of the training data, each of which consisted of 50 trees, with
an mtries parameter of 30 and a maximum depth of 40.

We used the out-of-bag results to generate segmentations of each test case, with an
average Dice score of 0.85 (sd 0.06). The mean average symmetric surface distance
(ASSD) of our method was 1.42 (sd 1.01), and the mean Hausdorff distance was
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30.71 (sd 18.91). Currently our method does not involve any post-processing
to remove isolated outlier voxels: we could expect the Hausdorff distance in
particular to benefit from such post-processing. Time to run the algorithm on a
single case, including feature extraction, was six minutes.

Further work to improve the classifier will consist in optimizing, using the
out-of-bag error, the parameters of the individual random forest models, and
incorporating post-processing to improve the Hausdorff distance.
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Abstract. The proposed method is based on a left-to-right comparison of the
brain hemispheres to (i) restrict the segmentation only to the affected one and
(ii) to pre-select the potential lesion by a threshold-free comparison with the con-
tralateral, healthy side as a reference.

1 Method

In almost all cases of acute embolic anterior circulation stroke only one hemisphere is
affected (corresponding to the ground truth segmentations of the training dataset). We
exploit this feature to (i) restrict the segmentation to only the affected hemisphere and
(ii) to pre-select the potential lesion by comparing local histograms of the affected side
with the contralateral, healthy counterpart used as reference values. The algorithm is
illustrated in Fig. 1 below.

Fig. 1. Illustration and description of the propsed algorithm.
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Due to the perfusion-diffusion-mismatch conceptm, our approach is based on the eval-
uation of just the Tmax and ADC-values. The important steps of the proposed method
are described below in more detail.

1.1 Separation of the Hemispheres

For the separation of the hemispheres, we use a simple, but fast and robust algorithm.
Since the brain extraction was already performed in the training datasets, the brain mask
can easily be generated by thresholding the Tmax maps with Tmax > 6s. A additional,
mirrored mask is generated as by flipping the original mask on the L-R direction. The
separation plane of the brain hemispheres can be found by the optimal overlap of the
mirrored and the original masks. To achieve this, a global search on the grid of all
possible rotations and translations between the to masks is performed, and the correla-
tion value is computed. The highest correlation indicates the best transformation, from
which the separation plane can be derived.

1.2 Potential Lesion Segmentation

The affected hemisphere is identified as the one with the highest median value of Tmax.
For each voxel at position x, a normalized, regional histogram H(x, ti) is calculated in
a 20×20×12mm3 neighborhood with a bin-width of ti+1− ti = 1.5 s. The difference
to the corresponding contralateral histogram H̃(x, ti) taken from the mirrored part of
the brain is calculated via

D(x) =
1

2

∑

i

∣∣∣H(x, ti)− H̃(x, ti)
∣∣∣ (1)

This resulting map of histogram differences is thresholded by 0.5 to find the regions
with unusual Tmax values. The distance map does not show whether the unusual value
is higher or lower than the one of the corresponding healthy side. Therefore, only voxels
with a Tmax median value greater than the one of the healthy side are selected. Further,
to remove potentially noise voxels, only those with a sufficient number of non-zero
values in their neighborhood – corresponding to 1/2 of the neighborhood volume –
are considered. To clean the mask, we apply morphological erosion with a kernel of
6×6×4mm3, then we omit connected components with a volume smaller than 20mL,
and finally apply morphological dilation with the same kernel used for erosion.

1.3 Thresholded Lesion Segmentation

The previous step already provides us with a good segmentation of the potentially ab-
normal region. To select only the penumbra region with critical perfusion deficit, an
additional threshold has to be applied. We applied a thresholding with the generally
accepted value of Tmax > 6s, as performed for the ground truth segmentation of the
MICCAI ISLES challenge. To clean the mask, we again apply the same morphological
operation as described above.
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1.4 CSF removal

The ADC maps are thresholded with ADC > 1700mm2/s to define a simple, but
effective CSF mask. This mask is multiplied with the Tmax segmentation.

2 Results and Discussion

The following discussion refers to the 30 examples of the training dataset of the MIC-
CAI ISLES challenge.

In all examples, the plane separating the left and right hemisphere of the brain could
always be determined. With this, the affected hemisphere was always identified cor-
rectly.

The generally applied hard threshold of Tmax > 6s, but not free from limitations,
as the critical perfusion delay might depend on individual factors such as patient age
and previous diseases, and measurement noise.

The proposed method can help overcome this problems, as it includes a pre-selection
of the potential lesion based on a comparison with the contralateral, healthy regions of
the brain. This can be observed in e.g. example 10, Fig. 2, where the brain extraction
did not remove some regions outside of the brain where the Tmax map show an en-
hancement. This is falsely included in the ground truth, but excluded in our approach,
as it appears equally on both sides of the brain.

With this pre-selection, the final segmentation could be restricted to a reasonable
region: on average, the ground truth was included by a rate of 85% with a false positive
rate of 67%. With a final thresholding by the standard value of Tmax ¿ 6s, followed
by morphological operations, the false positives could be reduced to 21% by a false
negative rate on an equal order of 20%. This is satisfiable, as for the diffusion-perfusion
mismatch ratio, not the precise shape of the segmentation is crucial, but the volume.

We limited the evaluation to the Tmax and ADC maps only in order to keep the
method as practical as possible. Further, in many cases stroke patients are unsettled and
move heavily, such that the image quality does not allow for a proper coregistration of
different modalities on the level of the voxel-size. Finally, the computational costs of
the proposed method are very low, which is crucial in acute stroke. The evaluation is
performed in a couple of seconds on a standard desktop PC.

3 Conclusions

We presented a simple and fast algorithm for penumbra segmentation in acute stroke.
The key features of the method are the low computational costs, the restriction to the
affected hemisphere only, and the threshold-free pre-selection of abnormal Tmax val-
ues.
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Fig. 2. Left: Training set 16. This example shows a good agreement with ground truth (green).
The pre-selection of the potential lesion (red) defines an accurate restriction to the final segmen-
tation (blue). Right: Training set 10. The significant discrepancy to the ground truth can partly
be explained by the apparently insufficient brain extraction, which retains vessels outside of the
skull with a strong Tmax enhancement. This might be falsely included in the ground truth, but
excluded in the proposed method, as the enhancement is also present in the contralateral, healthy
reference regions. The frontal part in the lower slices was likewise excluded in our segmentation,
since the contralateral region also shows a significant enhancement.
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Abstract. Ischemic stroke treatment decisions are time-critical and de-
pend largely on the potentially salvageable tissue. This rises the need
for accurate, reproducible and reliable segmentation of acute ischemic
stroke lesions from brain MR scans. This article details a contribution
to the Acute Stroke Penumbra EStimation (SPES) sub-task of the Is-
chemic Stroke Lesion Segmentations Challenge (ISLES), organized in
conjunction with the MICCAI 2015. The proposed method bases on pre-
vious works, which showed the approach to handle the tasks well and
to be applicable to potentially flawed data acquired in clinical routine.
The method is described in detail and all chosen parameter values are
disclosed. Preliminary results on the training data places the approach
among the highest ranking contributions.

Keywords: acute ischemic stroke, lesion segmentation, penumbra estimation,
magnetic resonance imaging, brain MRI, random forest, RDF

1 Introduction

Ischemic stroke is caused by an obstruction of the blood supply to the brain and
the subsequent death of brain tissue. Its diagnosis often involves the acquisition
of brain magnetic resonance (MR) scans to assess the strokes presence, location,
extent, evolution and other factors. If diagnosed early, part of the under-perfused
tissue could still be salvaged by re-establishing the blood flow. Since the available
treatment options are not risk-free and can e.g. lead to inter-cranial bleeding,
the decision has to be made individually, depending on the potential gain and
under great time restriction. An automated method to distinguish the already
necrotic from the potentially salvageable tissue (furthermore termed penumbra,
although this term is disputed) would be highly beneficial for the clinical routine
and reduce incorrect decisions. The ISLES 2015 challenge offers the first platform
for researchers to compare their methods directly and fair. Our contribution
draws its base from a previously published method targeted towards sub-acute
ischemic stroke lesions [3], which showed good results. It is based on carefully
selected features extracted from the MR sequences and used to train a random
forest (RF).
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2 Method

The challenge’s training data consists of multi-spectral (T1c, T2, DWI, CBF,
CBV, TTP, Tmax) scans of 30 patients displaying acute ischemic stroke. For
training the manual segmentations of a single expert rater has been provided.
More details on the data can be found on www.isles-challenge.org.

2.1 Pre-processing

The image data is provided with a 1mm isotropic resolution, already co-registered
and skull-stripped. Nevertheless, the training cases of the challenge display high
intensity differences, a normal occurrence for MRI, where intensity ranges are
not standardized. With a learning based intensity standardization method im-
plemented in MedPy [2] and based on [4] we harmonize each T1c, T2 and DWI
sequences intensity profile without a prior bias-correction step. The Tmax se-
quence, which is considered the most discriminative for penumbra estimation, is
cut-off at an upper value of 100, which corresponds to 10 s.

2.2 Forest classifier

We employ the RF classifier implemented in [5], which is similar to the propo-
sitions made by [1]. The classification of brain lesions in MRI is a complex task
with high levels of noise [3], hence a sufficiently large number of trees must be
trained.

2.3 Features

The primary distinction criteria for identifying pathological tissue of stroke le-
sions is the MR intensity in the different sequences. The bulk of our voxel-wise
features therefore bases on the intensity values.

intensity First feature is the voxel’s intensity value.

gaussian Due to the often low signal-to-noise ratio in MR scans and intensity
inhomogeneities of the tissue types, we furthermore regard each voxel’s value
after a smoothing of the volume with a 3D Gaussian kernel at thr ee sizes:
σ = 3, 5, 7 mm.

hemispheric difference Gliomas mostly affect a single hemisphere, therefore we
extract the hemispheric difference (in intensities) after a Gaussian smoothing of
σ = 1, 3, 5 mm to account for noise. For simplicity, the central line of the saggital
view is taken as sufficiently close approximation of the sagittal midline.
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center distance Finally, we extract the distance to the image center (assumed
here to coincide roughly with the brain’s center of mass) in mm as final feature.
Note that this is not intensity based, but rather discloses each voxel’s rough
location inside the brain.

All features are extracted from each of the MR sequence, hence in total we
obtain 52 values per multi-spectral voxel. Note that all of these features are
implemented in MedPy [2].

2.4 Post-processing

After thresholding the a-posteriori class probability maps for a crisp segmen-
tation, all but the largest connected component are removed. No other post-
processing steps are employed.

3 Experiments

3.1 Training choices and parameter values

For training our RF, we sample 1,000,000 voxels randomly from all training
cases. The ratios between classes in each case are kept intact (i.e. stroke class
samples will be highly under-represented). A total of 100 trees are trained for
the forest. As split criteria the Gini impurity is employed, a maximum of

√
52

features is considered at each node. No growth restrictions are imposed. The
a-posteriori class probabilities produced by the forest are thresholded at a value
of 0.35 to counter under-segmentation.

3.2 Preliminary results

Online evaluation is provided with the Dice’s coefficient (DC), the average symm-
teric surface distance (ASSD) and the Hausdorff distance (HD) as quality met-
rics. Using a leave-one-out evaluation scheme, we have obtained the scores pre-
sented in Tab. 1.

Table 1. Mean evaluation results and standard deviation on 28 training cases. See the
text for details on the abbreviations employed.

DC ASSD HD

30 cases 0.83 ± 0.06 1.38 ± 0.66 23 ± 13
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4 Discussion and conclusion

After the challenge date, the final results can be found on the challenge web-
page www.isles-challenge.org. Preliminary results rank our method among the
best performing. An advantage of our aproach is its flexible design, that allows
an application for a large number of brain lesion segmentation tasks (see e.g. [3]).
Slightly adapted versions have been handed in to the sibbling challenges ISLES
2015: SISS and BRATS 2015.

By employing RFs, we have a powerful classifier at our hand that is robust
against uninformative features, generalizes well and produces good results for a
wide range of parameters. Mixing widely used with specially designed features,
we can successfully learn to discriminate between the acute stroke area and
healthy brain tissue.

On the downside, they suffer from the same drawbacks as all other machine
learning based methods: The training set must be carefully chosen and types of
cases not present in the training data can not be processed.
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