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Preface

Stroke is the second most frequent cause of death and a major cause of disability in industrial  

countries. In patients who survive, stroke is generally associated with high socioeconomic costs 

due  to  persistent  disability.  Its  most  frequent  manifestation  is  the  ischemic  stroke,  whose 

diagnosis often involves the acquisition of brain magnetic resonance (MR) scans to assess the 

stroke lesion's presence, location, extent, evolution and other factors. An automated method to 

locate,  segment and quantify  the lesion area would support  clinicians and researchers  alike,  

rendering their findings more robust and reproducible.

New methods for stroke segmentation are regularly proposed. But, more often than desirable, it  

is  difficult  to compare their fitness,  as the reported results are obtained on private datasets.  

Challenges aim to overcome these shortcomings by providing (1) a public dataset that reflects  

the diversity of the problem and (2) a platform for a fair and direct comparison of methods with  

suitable evaluation measures. Thus, the scientific progress is promoted.

With ISLES, we provide such a challenge covering ischemic stroke lesion segmentation in multi-

spectral MRI data. The task is backed by a well established clinical and research motivation and a  

large number of already existing methods. Each team may participate in either one or both of 

two sub-tasks:

SISS Automatic segmentation of ischemic stroke lesion volumes from multi-spectral MRI 

sequences acquired in the sub-acute stroke development stage.

SPES Automatic  segmentation  of  acute  ischemic  stroke  lesion  volumes  from  multi-

spectral MRI sequences for stroke outcome prediction.

The participants downloaded a set of training cases with associated expert segmentations of the 

stroke lesions to train and evaluate their approach, then submitted a short paper describing 

their  method.  After  reviewing  by  the  organizers,  a  total  of  17  articles  were  accepted  and  

compiled into this volume. At the day of the challenge, each teams' results as obtained on an 

independent test set of cases will be revealed and a ranking of methods established.

For the final ranking and more information, visit WWW.ISLES-CHALLENGE.ORG  .
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Prediction of Ischemic Lesions using Local
Image Properties and Random Forests

John Muschelli

Johns Hopkins Bloomberg School of Public Health

1 Methods

1.1 Registration with Symmetric Normalization

Although the images were registered to the FLAIR sequence, some local differ-
ences between spatial locations were observed. We therefore re-registered each
sequence to the FLAIR image using Symmetric Normalization (SyN) included
in the ANTs software.

1.2 Inhomogeneity Correction

Although, there may be non-uniform image intensities spatially in the brain, we
did not perform inhomogeneity correction, for example, the N4 bias correction
available within ANTs. We believer that as some lesions may be very large, using
inhomogeneity corrections may induce lesion areas to be similar to non-lesion
areas. We use estimated smoothed images in the prediction, which should help
correct for some inhomogeneity.

1.3 Intensity Normalization

As MRI are acquired in arbitrary units, we performed an intensity-based nor-
malization. Let xs,v represent the intensity of image sequence s for voxel v. Let
Zs,v represent the intensity-normalized data. We subtract an estimated mean
(µs) and standard deviation (σs) for each sequence and normalize the data as
follows:

Zs,v =
xs,v − µs

σs

Estimation of the mean and standard deviation The mean and standard
deviation are actually estimated from the trimmed distribution of the data of all
voxels within the brain mask. The trimming procedure takes all voxels within
the brain mask, removes the upper and lower 20% of the data, and estimates the
mean and standard deviation from these intensities. This standardizes voxels to
the number of (trimmed) standard deviations above the trimmed mean. The goal
of the trimming is to delete high-intensity voxels from the lesion or low-intensity
voxels from edema.



1.4 Imaging Predictors

We derived a set of imaging predictors from each scan. We will describe each
here with their rationale for use. These features make up the potential set of
predictors for image segmentation. Each operation uses the normalized images.

Normalized intensity information The normalized voxel intensity value in
z-units was included, as it is the main predictor used in visual inspection; high
values are indicative of lesion.

1.5 Flipped Difference Image

As most lesions are only on one side of the brain, we calculated the difference
in intensity between a voxel and the voxel on its contralateral side. We obtained
this image by first rigidly registering the image to the MNI template to account
for any head tilt, then flip the image over the left-right axis, and then take the
difference of the flipped image and the original image.

Local Moment Information For each voxel, we extracted a neighborhood,
denoted Nv, of all adjacent neighboring voxels in 3 dimensions and the voxel
itself. Let Is,v(k) denote the normalized voxel intensity in for voxel neighbor k,
where k = 1, . . . , 27. We created the voxel neighborhood mean intensity (x̄s,v):

x̄s,v =
1

Nv

∑
k∈Nv

xs,v (1)

We calculated the voxel neighborhood standard deviation (SD), skew, and kur-
tosis using the following method of moments estimators:

SDs,v =

√√√√ 1

Nv

∑
k∈N(v)

(xk(v)− x̄(v))
2

Skew(v) =

1
Nv

∑
k∈Nv

(xk(v)− x̄(v))3[
1
Nv

∑
k∈Nv

(xk(v)− x̄(v))2

]3/2

Kurtosis(v) =

1
Nv

∑
k∈Nv

(xk(v)− x̄(v))4(
1
Nv

∑
k∈Nv

(xk(v)− x̄(v))
2

)2

We acknowledge that we did not divide by Nv − 1 for standard deviation and
skewness, nor did we subtract by 3 for kurtosis. As Nv should be the same per



voxel, this should not affect the estimates for prediction and will be accounted for
in any generalized linear model in the estimated coefficient. We also estimated
the local gradient of the normalized intensity for each voxel neighborhood ∇v,s:

∇v,s =
√
∇2

v,s,x +∇2
v,s,y +∇2

v,s,z

Voxels higher in their local mean correspond to voxels adjacent to higher
HU voxels on average, which are are more likely to be lesion. The higher order
moments can provide information about how homogeneous the intensities in the
neighborhood are and where edges occur.

Global Head Information We created 3 images which were obtained by
smoothing the original image using large Gaussian kernels (σ = 5mm3, 10mm3, 20mm3),
which can capture any potential homogeneity throughout the scan.

1.6 Model

To train an algorithm, we used 9 images and downsampled 300, 000 voxels. We
then used a random forest on these to predict lesion, using 500 trees. From
the random forest, we obtained the probability of lesion and determined the
threshold for these probabilities using the out-of-sample voxels from the training
images, optimizing for the Dice Similarity Index (DSI). We then predicted lesions
on the test dataset of 19 scans.

2 Discussion

We believe that our our method allows for a robust procedure for segmentation
of large ischemic lesions. This is due to intensity normalization and the set
of features that can differentiate lesion areas from healthy tissue. Using local
properties, we can leverage spatial information of the image. As such, we can use
methods that can use the voxel information without having a more complicated
multi-variate framework. The random forest allows for a flexible framework for
prediction, especially as some features are highly correlated.


