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Preface

Stroke is the second most frequent cause of death and a major cause of disability in industrial  

countries. In patients who survive, stroke is generally associated with high socioeconomic costs 

due  to  persistent  disability.  Its  most  frequent  manifestation  is  the  ischemic  stroke,  whose 

diagnosis often involves the acquisition of brain magnetic resonance (MR) scans to assess the 

stroke lesion's presence, location, extent, evolution and other factors. An automated method to 

locate,  segment and quantify  the lesion area would support  clinicians and researchers  alike,  

rendering their findings more robust and reproducible.

New methods for stroke segmentation are regularly proposed. But, more often than desirable, it  

is  difficult  to compare their fitness,  as the reported results are obtained on private datasets.  

Challenges aim to overcome these shortcomings by providing (1) a public dataset that reflects  

the diversity of the problem and (2) a platform for a fair and direct comparison of methods with  

suitable evaluation measures. Thus, the scientific progress is promoted.

With ISLES, we provide such a challenge covering ischemic stroke lesion segmentation in multi-

spectral MRI data. The task is backed by a well established clinical and research motivation and a  

large number of already existing methods. Each team may participate in either one or both of 

two sub-tasks:

SISS Automatic segmentation of ischemic stroke lesion volumes from multi-spectral MRI 

sequences acquired in the sub-acute stroke development stage.

SPES Automatic  segmentation  of  acute  ischemic  stroke  lesion  volumes  from  multi-

spectral MRI sequences for stroke outcome prediction.

The participants downloaded a set of training cases with associated expert segmentations of the 

stroke lesions to train and evaluate their approach, then submitted a short paper describing 

their  method.  After  reviewing  by  the  organizers,  a  total  of  17  articles  were  accepted  and  

compiled into this volume. At the day of the challenge, each teams' results as obtained on an 

independent test set of cases will be revealed and a ranking of methods established.

For the final ranking and more information, visit WWW.ISLES-CHALLENGE.ORG  .
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Hierarchical Segmentation of Normal and
Lesional Structures Combining an Ensemble of
Probabilistic Local Classifiers and Regional

Random Forest Classification

Andrew Jesson and Tal Arbel

Centre for Intelligent Machines, McGill University

1 Overview

We present a hierarchical framework for the simultaneous segmentation of nor-
mal and pathological structures in brain MRI. The framework starts with the
ensemble decision made by a number of probabilistic local classifiers distributed
thoughout a fixed reference space (EPLC). The EPLC provides consistent smooth
segmentations for both normal and pathological structures which are then grouped
into regions and passed on to a high-level regional random forest classifier (RRF).

2 Implementation

The class of a given voxel in medical image segmentation problems depends on
its location within the image reference space, its intensity value, neighborhood
context in both the intensity and class label domain, and regional context be-
tween continuously labeled structures. Here we model location by an esemble
of local classifiers populated throughout a common reference space. Each lo-
cal classifier models the class posterior probability of the class given voxel and
neighbourhood context in the intensity domain by taking a filtered patch of the
image as input. Neighbourhood context in the label domain is modeled by a
global Markov Random Field (MRF). Finally, regional context is captured by a
random forest classifier.

2.1 Ensemble of Probabilistic Local Classifiers

Reference space. The EPLC requires a common reference space and so we
use the reference space defined by the MNI Linear ICBM Average Brain Stereo-
taxic Registration Model [2,3]. Each subject is normalized into this space us-
ing the rigid transform determined by the antsRegistration tool [4] with sub-
ject/template T1 image pair as input. The spatial centres of each local classifier
are distributed throughout this space in a hexagonal close-packed lattice and are
given by
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where i, j, k are the voxel indices and r is chosen to be 8.5mm.

Local classifiers. In total there are N = 554 local classifiers as we retain only
those with spatial centres that overlap with the reference space model’s brain
mask. Each local classifier has a radially decaying spatial responsibility in the
reference space given by
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where c is a constant controlling the decay of the spatial responsibility chosen
here to be 0.693 and Z is a normalization constant defined by the sum of all
spatial responsibilities at x.

Each classifier builds distributions for K = 11 classes in total, namely back-
ground, cerebrospinal fluid, lateral ventricles, other ventricles, deep gray matter,
cortical gray matter, cerebellar gray matter, cerebral white matter, cerebellar
white matter, brain stem, and lesion. Given that ground truth is only available
for lesion, we generate a set of atlases from the training data using the Multi-
Atlas Label Fusion approach that was developed in previous work in the context
of MS lesion segmentation to get training samples for normal structures [1].

To model neighbourhood context in the intensity domain each classifier takes
a 15x7x3x3 patch centred around a given voxel as input. The first three dimen-
sions of the patch are spatial and the fourth dimension is comprised of the T1,
FLAIR, and DWI contrasts. To spatially decorrelate the input patch and reduce
dimensionality we filter the patch with principal component analysis (PCA) de-
termined kernels. Mixtures of gaussians (GMM) then model the distribution of
each class given the filtered input.

For each test subject, 5000 samples are drawn randomly, with replacement,
and weighted by wn(x). The patches are reshaped to 1x945 observation vectors
d(x) to form a 5000x945 observation matrix D and each column of D is stan-
dardized. GMM inputs are given by ˆ

dn(x) = d(x)Un, where Un is a 945xpmatrix
of principal components determined during training. Un is unique for each local
classifier and p is determined by taking the principal components with largest
explained variance such that the total retained variance is ⇠ 90% of the total
variance from the training set.

The probability density functions pn(ˆdn(x) | Ck) are estimated during train-
ing using a GMM for each class Ck and the number of components for each
model are determined iteratively using Bayesian information criterion (BIC).
The class prior probabilities pn(Ck) are estimated as the relative frequency of
class Ck sampled by the local classifier during training. The posterior probability
of observing class Ck given ˆ

dn(x) by the nth classifier is given by



Fig. 1. Example segmentations after ensemble decision. Each square contains an axial
slice from a given subject: T1, top left; Segmentation, top right; DWI, bottom left;
Ground truth lesion, bottom right. Lesion, red; CSF, green; deep gray matter, yellow;
cortical gray matter, cyan; cerebellar gray matter, purple; cerebral white matter, white;
cerebellar white matter, blue; brain stem, beige. Results are based on 7-fold cross
validation on the training data.
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The ensemble confidence for a given class at voxel x is then given by

f(wn(x), ˆdn(x), Ck) =
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Global MAP-MRF. Given that samples for each local classifier are drawn
randomly with replacement there is no guarantee that all voxels will be visited
by the EPLC. We use a MRF solution to yield a smooth labelling. The prior
energy is given by a Potts model with � = 0.1 and the observation energy
is given by � log(f(wn(x), ˆdn(x), Ck)). The optimal labelling solution is found
using ICM. Figure 1 shows example segmentations from several subjects.

Utilizing probabilistic outliers. As can be seen in figure 1 the healthy tissue
segmentations are qualitatively consistent and acceptable; however, lesions ap-
pear consistently under segmented. Fortunately, by using a probabilistic model
for each local classifier we can obtain a quantitative outlier measure using the
Mahalanobis distance (computing CDF for each high dimension GMM is pro-
hibitively time consuming). An outlier mask is generated for each subject by



thresholding the Mahalanobis distance corresponding to the maximum posterior
class value by 2 standard deviations above the global mean measure. This mask
is then added to the proposed lesion segmentation.

2.2 Regional Random Forest Classifier

Lesion segmentations are finally refined using a random forest classifier. Candi-
date lesions are defined by morphological 18-connected regions. Features for the
random forest are the distance minimum, maximum, mean and variance from
each normal tissue label excluding background; the volume, and solidity of the
candidate lesion; the convex hull inertial tensor and principal moments of the
candidate lesion; and 32 bin histograms from normalized T1, FLAIR, and DWI
contrasts over the candidate lesion. In total there are 146 features and each candi-
date split in the forest randomly chooses 12 of these features. We use MATLAB’s
’treebagger’ class to implement the random forest. Candidate lesions for which
the confidence of the random forest is greater than around 40% are retained for
the final classification. Figure 2 shows the e↵ect of the high level refinement on
the lesion segmentations provided by the ensemble of local classifiers.

Fig. 2. Example lesions segmentations. From top to bottom: EPLC output, context
based classifier output, ground truth segmentation. From left to right: di↵erent subjects
in training dataset. Below rows 1 and 2 are the computed challenge metrics for the
subject. Results are based on 7-fold cross validation on the training data.
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