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Preface

Stroke is the second most frequent cause of death and a major cause of disability in industrial  

countries. In patients who survive, stroke is generally associated with high socioeconomic costs 

due  to  persistent  disability.  Its  most  frequent  manifestation  is  the  ischemic  stroke,  whose 

diagnosis often involves the acquisition of brain magnetic resonance (MR) scans to assess the 

stroke lesion's presence, location, extent, evolution and other factors. An automated method to 

locate,  segment and quantify  the lesion area would support  clinicians and researchers  alike,  

rendering their findings more robust and reproducible.

New methods for stroke segmentation are regularly proposed. But, more often than desirable, it  

is  difficult  to compare their fitness,  as the reported results are obtained on private datasets.  

Challenges aim to overcome these shortcomings by providing (1) a public dataset that reflects  

the diversity of the problem and (2) a platform for a fair and direct comparison of methods with  

suitable evaluation measures. Thus, the scientific progress is promoted.

With ISLES, we provide such a challenge covering ischemic stroke lesion segmentation in multi-

spectral MRI data. The task is backed by a well established clinical and research motivation and a  

large number of already existing methods. Each team may participate in either one or both of 

two sub-tasks:

SISS Automatic segmentation of ischemic stroke lesion volumes from multi-spectral MRI 

sequences acquired in the sub-acute stroke development stage.

SPES Automatic  segmentation  of  acute  ischemic  stroke  lesion  volumes  from  multi-

spectral MRI sequences for stroke outcome prediction.

The participants downloaded a set of training cases with associated expert segmentations of the 

stroke lesions to train and evaluate their approach, then submitted a short paper describing 

their  method.  After  reviewing  by  the  organizers,  a  total  of  17  articles  were  accepted  and  

compiled into this volume. At the day of the challenge, each teams' results as obtained on an 

independent test set of cases will be revealed and a ranking of methods established.

For the final ranking and more information, visit WWW.ISLES-CHALLENGE.ORG  .
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1 Statistical template

In order to enable voxel-wise comparisons across subjects, all T1, T2, Flair and
DWI volumes, as well as the volumes containing manual segmentations, were
warped to a common template. The template was generated by the Advanced
Normalization Tools (ANTs) software version 2.1.0rc3 [1] using buildtemplatepar-
allel script, greedy SyN transformation model, cross-correlation similarity met-
ric, 30 × 90 × 20 interations and the T1 images of the training dataset. All T1
images were deformed to this template with ANTs software using Affine transfor-
mation model for rigid registration and SyN transformation model for warping.
The detailed parameters are given in Appendix. This defined a transformation
which was applied to T2, Flair, DWI and manual segmentation volumes. All MR
images were masked with a volume containing only in-brain voxels to minimize
the effect of background to the automatic segmentation of ischemic stroke lesion
volumes.
Images in the common template space representing mean and standard deviation
(std) of voxel intensities over subjects were calculated voxel-by-voxel, separately
for T1, T2, Flair and DWI images. We call these images statistical templates
from now on. Note that the lesion voxels were not included in the calculation of
average and std. Because most subjects in the training dataset had lesions on
the left hemisphere, there were fewer voxels contributing to the mean and std
on the left; as a result, the left hemisphere appeared slightly distorted on the
template images. In order to compensate for this left-right bias, the mean and
std images were additionally averaged over left and right hemispheres. Further-
more, the images were smoothed with a 3D Gaussian kernel (FWHM 3 mm) to
decrease the effect of registration inaccuracies.

2 Random Forest classification algorithm

The initial segmentation was predicted with an ensemble learning method. A
set of features was derived from the training data and fed to a Random Forest



[2] classification algorithm implemented in Scikit-learn version 0.16.dev [3]. The
Random Forest algorithm combines classification results from a number of de-
cision trees. Several trees are constructed and fitted to the data during training
phase, using a random subset of features to train each tree. The final classifica-
tion is the mode of the classes obtained from all individual trees. Random Forest
classification greatly reduces overfitting, which is a common problem for simple
decision tree classifiers [2]. In this study, the performance of the classifier was
tested with leave-one-out cross-validation, in which one subject from the train-
ing dataset was used for testing and the rest for training the classifier, and the
procedure was repeated for all subjects. The classifier returned both the binary
classifications and probabilities (in range 0-1) that a voxel belonged to the lesion
area.

3 Classifier training

16 features were extracted from the MR images for subsequent classification. Z-
score normalized voxel intensities of T1, T2, Flair and DWI images constituted
features 1-4. Features 5-8 represented the Z-score deviations from global aver-
age images, calculated separately for each sequence by subtracting the global
mean and dividing with the global std. The purpose of these features was to
find regions showing large deviations from the normal brain, which likely indi-
cates presence of a lesion. Features 9-12 were obtained by smoothing the original
images with a 3D Gaussian kernel (FWHM 3 mm), thus including information
from the local neighborhood of each voxel. Smoothing was expected to improve
classification since it may reduce the effect of registration inaccuracies. Features
13-16 represented local asymmetry, obtained by comparing voxel intensities on
one hemisphere to the corresponding voxel intensities on the other hemisphere.
The motivation for calculating local asymmetry was the fact that lesions rarely
occur symmetrically on both hemispheres. The asymmetry measure was cal-
culated simply by subtracting the original smoothed image from the left-right
-mirrored smoothed image.
In order to decrease computational time and avoid classifier overfitting, we only
collected the aforementioned features from a randomly selected subset of voxels.
The maximum number of lesion voxels sampled from each subject was set to
300, and in cases where the lesion was smaller than that, all lesion voxels were
sampled. The ratio of lesion and non-lesion voxels per subject was kept constant,
such that twice as many voxels were sampled from non-lesion area as from lesion
area; thus, the maximum number of non-lesion voxels per subject was 600.
For the Random Forest classifier, the training set was resampled to train a total
of 300 decision trees. 4 features were used to obtain the best split at each indi-
vidual tree. The quality of each split was described by Gini impurity [2]. The
trees were grown unlimitedly, i.e. until each leaf contained only samples of a sin-
gle class. All parameters and default values used by Scikit-learn’s RandomForest
classifier are listed in Appendix.



4 Contextual clustering

The segmentation results obtained with the Random Forest method were further
improved with contextual clustering (CC). The clustering method was based on
a Markov random fields (MRF) prior and iterated conditional modes (ICM, [4])
algorithm, which were previously used for analysis of functional magnetic reso-
nance imaging (fMRI) data [5]. The basic assumption in contextual clustering
is that neighboring voxels tend to belong to the same class. Furthermore, it is
assumed that the intensity distribution of background voxels (in present case,
non-lesion voxels) is standard normal, but the distribution of lesion voxels is
unknown.

The CC algorithm modified for this study consisted of the following steps:

1. Fit a gamma distribution to all nonzero voxels of the probability map given
by the random forest classifier. Fitting is done using MATLABs (R2015a)
function fitdist with default parameters.

2. Transform the probability map values to standard normal distribution by
calculating the inverse normal distribution function (MATLAB function
norminv) from the cumulative distribution function (MATLAB function cdf )
of gamma distribution. This gives image N.

3. Define the parameter T for contextual clustering [5] using the fitted gamma
distribution:
T = −norminv(cdf(gamma,D)), where gamma is the fitted gamma dis-
tribution, and D some threshold. In this study we used empirically chosen
D = 0.6, which gave reasonable results with training data.

4. Run the CC algorithm [5] using the image N, neighborhood weight coefficient
β = T 2/6 and a threshold D = 0.6. The voxels will be reclassified to 0 or 1,
corresponding to non-lesion and lesion, respectively.

5. Repeat steps 1-4 with only the voxels classified as non-lesion in the first run
of CC.

Finally, all automatically segmented images were transformed back to each
subject’s native space using inverse transformation and nearest neighbor inter-
polation. After transformation it was possible to compare the automatic seg-
mentations with the manual lesion segmentations. The classification accuracy
was evaluated with the script provided at ISLES web page (http://www.isles-
challenge.org), including measurements for Dice coefficient, average symmetric
surface distance (ASSD), Hausdorff distance, precision and recall.

5 Testing phase

The test data will be spatially normalized to the common template using the
parameters listed in Appendix, but without the lesion images (–x option). Af-
ter that, the trained Random Forest classifier and contextual clustering will be
applied to the data.
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Appendix

Generation of templates
The common template was done in two phases. First, the initial template was
formed:
buildtemplateparallel.sh -d 3 -m 1x0x0 -n 0 -r 1 -t GR -s CC -o [initial template
image] -c 0 -j 1 [T1 images]

After that, the final template was built using the initial template:
buildtemplateparallel.sh -d 3 -m 30x90x20 -n 0 -r 0 -t GR -s CC -o [template
image] -z [initial template image] -c 0 [T1 images]

Warping of T1 images to common template was done using antsRegistration
tool and the following parameters:
–metric MI[template image, T1 image,1,32] –transform affine[0.25] –convergence
10000x10000x10000x10000x10000 –shrink factors 5x4x3x2x1 –smoothing-sigmas
4x3x2x1x0 –metric CC[template image, T1 image,1,5] –transform SyN[0.25,3.0,0.0]
–convergence 50x35x15 –shrink factors 3x2x1 –smoothing-sigmas 2x1x0 -use-
histogram-matching 1 –x [lesion image]

Parameters for Random Forest classifier
Scikit-learn’s function sklearn.ensemble.RandomForestClassifier was used with
the following parameters:
n estimators=300, criterion=’gini’, max depth=None, min samples split=2,
min samples leaf=1, min weight fraction leaf=0.0, max features=4,
max leaf nodes=None, bootstrap=True, oob score=False, n jobs=1,
random state=None, verbose=0, warm start=False, class weight=None


