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Preface

Stroke is the second most frequent cause of death and a major cause of disability in industrial  

countries. In patients who survive, stroke is generally associated with high socioeconomic costs 

due  to  persistent  disability.  Its  most  frequent  manifestation  is  the  ischemic  stroke,  whose 

diagnosis often involves the acquisition of brain magnetic resonance (MR) scans to assess the 

stroke lesion's presence, location, extent, evolution and other factors. An automated method to 

locate,  segment and quantify  the lesion area would support  clinicians and researchers  alike,  

rendering their findings more robust and reproducible.

New methods for stroke segmentation are regularly proposed. But, more often than desirable, it  

is  difficult  to compare their fitness,  as the reported results are obtained on private datasets.  

Challenges aim to overcome these shortcomings by providing (1) a public dataset that reflects  

the diversity of the problem and (2) a platform for a fair and direct comparison of methods with  

suitable evaluation measures. Thus, the scientific progress is promoted.

With ISLES, we provide such a challenge covering ischemic stroke lesion segmentation in multi-

spectral MRI data. The task is backed by a well established clinical and research motivation and a  

large number of already existing methods. Each team may participate in either one or both of 

two sub-tasks:

SISS Automatic segmentation of ischemic stroke lesion volumes from multi-spectral MRI 

sequences acquired in the sub-acute stroke development stage.

SPES Automatic  segmentation  of  acute  ischemic  stroke  lesion  volumes  from  multi-

spectral MRI sequences for stroke outcome prediction.

The participants downloaded a set of training cases with associated expert segmentations of the 

stroke lesions to train and evaluate their approach, then submitted a short paper describing 

their  method.  After  reviewing  by  the  organizers,  a  total  of  17  articles  were  accepted  and  

compiled into this volume. At the day of the challenge, each teams' results as obtained on an 

independent test set of cases will be revealed and a ranking of methods established.

For the final ranking and more information, visit WWW.ISLES-CHALLENGE.ORG  .
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1 Université de Sherbrooke, Sherbrooke, Qc, Canada
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Abstract. Deep Neural Networks (DNNs) are often successful at solv-
ing problems for which useful high-level features are not obvious to de-
sign. This document presents how DNNs can be used for automatically
segment brain lesions for the MICCAI Ischemic Stroke Lesion Segmen-
tation (ISLES) challenge. We experimented several DNN architectures
leveraging the recent advances in the field such as convolutional layers,
max pooling, maxout units, dropout regularization, and various training
strategies.
We present the results of our best performing network on the SISS and
SPES training datasets. The results are obtained from the evaluation
tool available on the Virtual Skeleton database. As of today, empirical
results show that our approach is the most accurate one.

1 Introduction

Brain lesions are abnormalities in the tissue of an organism, usually caused by
disease or trauma. The delineation and quantification of brain lesions is criti-
cal to establishing patient prognosis, and for understanding the development of
pathology over time. Typically, this is performed manually by a medical expert
through investigation of several Magnetic Resonance Imaging (MRI) modali-
ties. To alleviate the tedious, time consuming manual delineation, computerised
methods can be very useful.

Recently, Convolutional Neural Networks (CNNs) have proven particularly
successful in many computer vision applications. For instance, the so-called
AlexNet architecture [7] was the first to establish CNNs as the de facto state-of-
the-art methodology for object recognition in natural images. The main appeal of
convolutional networks comes with their end-to-end training nature [6]. That is,
their ability of learning low, medium, and high-level features (which involve lin-
ear and non-linear operators) as well as the classification function. The potential
of CNNs for segmentation in medical imaging however is not well understood,
and has only been the subject of preliminary investigations (see workshop publi-
cations [3, 10, 9]). In other work [5], alternative to the standard CNN framework
have also been explored for more general image segmentation tasks, with the
argument that CNN training is overly computationally intensive.
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Fig. 1: Our CNN model. The input patch goes through two convolutional net-
works each comprising of a local and a global path. The feature maps in the
local and global paths are shown in yellow and orange respectively.

In this document, we propose a successful, efficient, and automatic CNN
architecture for brain lesion segmentation. Note that the proposed CNN is similar
to the one used by our team on the 2015 MICCAI brain tumor segmentation
(BRATS) challenge. We report results on SPES and SISS training datasets and
confirm that our method is leading on both datasets.

2 Convolutional Neural Network Architecture

We approach the problem of brain lesion segmentation by solving it slice by
slice, from the axial view. Let X be one such 2D image (slice), where each pixel
is associated with multiple channels, one for each image modality. We treat the
problem of segmentation as one of taking any patch it contains and predicting
the label of the pixel at its center. The problem is thus converted into an image
classification problem.

In the context of this work, we tested a large number of CNN architectures
and the most effective one is shown in Figure 1. As can be seen, our method
uses a two-pathway architecture in which each pathway is responsible for learning
about either the local details or the larger context of tissue appearances (e.g.
whether or not it is close to salient regions of the brain like the skull or the CSF).
The pathways are joined by concatenating their feature maps immediately before
the output layer.

Finally, a prediction of the class label is made by stacking a final output
layer, which is fully convolutional to the last convolutional hidden layer. The
number of feature maps in the last layer matches the number of class labels and
prediction is made with the softmax non-linearity.

2.1 Efficient Two-Phase, Patch-Wise Training

By interpreting the output of our CNN as a model for the distribution over
segmentation labels, a natural training criteria is to maximize the probability
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Fig. 2: SISS MRI modalities. The images show the MRI modalities used as input
channels to the CNN model for SISS dataset.
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Fig. 3: SPES MRI modalities. The images show the MRI modalities used as input
channels to the CNN model for SPES dataset.

of all labels in our training set or, equivalently, to minimize the negative log-
probability − log p(Y|X) =

∑
ij − log p(Yij |X) for each labeled brain. To do this,

we follow a stochastic gradient descent approach by repeatedly selecting labels
Yij at a random subset of positions (i.e. patches) within each brain, comput-
ing the average negative log-probabilities for this mini-batch of positions and
performing a gradient descent step on the CNNs parameters.

Care must be taken however to ensure efficient training. Indeed, since the
distribution of labels is very imbalanced (e.g. more than 98% of the brain is
healthy), selecting patches from the true distribution would cause the model to
be overwhelmed by healthy patches. It is well known that neural network training
algorithms such as stochastic gradient descent perform poorly in cases of strong
class imbalances. To avoid these issues, we initially construct our patches dataset
such that all labels are equiprobable. This is what we call the first training phase.
Then, in a second phase, we account for the unbalanced nature of the data and
re-train only the output layer (i.e. keeping the kernels of all other layers fixed)
with a more representative distribution over the labels. Using this approach, we
were able to fully train CNNs in less than 6 hours.

3 Implementation details

Our implementation is based on the Pylearn2 which supports GPU’s and can
greatly accelerate the execution of deep learning algorithms [4].



To test the ability of CNNs to learn useful features from scratch, we employed
only minimal preprocessing. We applied N4ITK bias correction [2] and clamp
the 1% highest intensities to the maximum grayscale value of the 99% remaining
pixels as done in [8]. These choices were found to work best in our experiments.
The data was normalized within each input channel by subtracting the channel
mean and dividing by its standard deviation.

The hyper-parameters of the model (kernel and pooling size for each layer)
are illustrated in Figure 1. The learning rate α is decreased by a factor γ = 10−1

at every epoch. The initial learning rate was set to α = 0.1. A post processing
method based on connected components was also implemented to remove flat
blobs which might appear in the predictions due to bright corners of the brains
close to the skull.

4 Experiments and Results

We conducted our experiments on the SISS and SPES datasets. The SISS dataset
contains 28 brains with four modalities namely: T1, Flair, Diffusion Weighted
Image (DWI) and T1. SPES dataset contains 30 brains with 7 modalities namely:
CBF, CBV, DWI, T1c, T2, Tmax and TTP. Both datasets provide pixel-accurate
level ground truth of the abnormal areas. Although the ground truth for SPES
dataset contains three classes (healthy, stroke, and edema), according to the
challenge website the evaluation is done by merging the two unhealthy classes.
Figure 3 and Figure 2 show examples from the SPES and SISS datasets.

The virtualskeleton webpage provides a quantitative evaluation of the model
[1]. It reports the dice, precision and recall coefficient, as well as the average
symmetric surface distance (ASSD) and the Hausdorff distance (HD).

Table 1 and Table 2 show the results obtained from the virtualskeleton web-
page on both SISS and SPES datasets and how we compare with other methods
applied on these datasets. As one can see, our method (dutif1) is well in front
the other methods. Our approach provides the best score on 4 of the 5 metrics on
the SISS dataset, and on 3 of the 5 metrics on the SPES dataset. Also, each time
our method is not rank first, it is ranked second. Let us underline the fact that
since the Hausdorff distances of our method (31.75 and 23.28) is significantly
lower than the ones obtained by the other methods, we may conclude that our
approach is less prone at detection outliers in the brain.

Figure 4 shows visual segmentation maps produced by our model on both
datasets. The first two rows show segmentation results on SPES dataset and the
two bottom rows show segmentation results on SISS dataset. It takes on average
25 seconds to produce a segmentation result. The larger receptive field in the
two-pathway method allows the model to have more contextual information of
the lesion. At the same time, the smaller receptive field make model flexible
enough to recognize the fine details of the lesion as opposed to making very
smooth segmentation as in the one path method. By allowing for a second phase
training and learning from the true class distribution, the model corrects most
of the misclassifications produced in the first phase.
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Fig. 4: Results obtained by our model on SPES (top row) and SISS (bottom row)
datasets.

Method ASSD Dice Hausdorff Distance Precision Recall
average std average std average std average std average std

dutif1 8.92 19.23 0.69 0.30 31.75 28.52 0.72 0.31 0.67 0.31
halmh1 6.77 13.17 0.63 0.23 36.16 36.46 0.68 0.24 0.64 0.26
jessa1 11.59 18.34 0.45 0.24 39.23 30.70 0.52 0.26 0.51 0.31

mahmq2 10.30 11.11 0.54 0.26 82.78 23.95 0.67 0.33 0.50 0.25
maieo1 12.36 12.30 0.36 0.25 56.94 40.98 0.65 0.41 0.35 0.21
muscj1 56.77 79.90 0.48 0.38 76.88 81.77 0.57 0.43 0.44 0.37
pinta1 12.18 22.59 0.50 0.31 43.21 30.50 0.61 0.34 0.55 0.33
robbd1 9.36 13.85 0.57 0.28 53.88 34.58 0.58 0.33 0.68 0.21

Table 1: Results on the SISS training dataset showing how our method compares
with other methods.



Method ASSD Dice Hausdorff Distance Precision Recall
average std average std average std average std average std

dutif1 1.76 0.94 0.85 0.08 23.28 14.13 0.83 0.11 0.88 0.08
haect1 3.51 2.13 0.78 0.08 46.31 25.17 0.78 0.11 0.80 0.12
mckir1 1.42 1.01 0.85 0.06 30.71 18.91 0.84 0.10 0.87 0.07
robbd1 2.03 1.35 0.82 0.07 44.29 27.59 0.81 0.14 0.85 0.07

Table 2: Results on the SPES training dataset showing how our method compares
with other methods.

5 Conclusion

In this document, we proposed a brain lesion segmentation method based on
deep convolutional neural networks. Results on the SISS and SPES datasets
reveal that our method is clearly the most accurate one. The high performance
is achieved with the help of a novel two-pathway architecture which can model
both the local details and global context. Note that the proposed CNN is close
to the one used by our team on the 2015 MICCAI brain tumor segmentation
(BRATS) challenge. Since there also our approach produced the most accurate
results, we are inclined to believe that CNN is a promising technology for brain
segmentation applications.
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